Näytä suppeat kuvailutiedot

dc.contributor.authorMadhala, Prashanth
dc.contributor.authorJussila, Jari
dc.contributor.authorAramo-Immonen, Heli
dc.contributor.authorSuominen, Anu
dc.contributor.editorCunnane, Vincent
dc.contributor.editorCorcoran, Niall
dc.date.accessioned2018-07-09T10:05:57Z
dc.date.available2018-07-09T10:05:57Z
dc.date.issued2018
dc.identifier.citationMadhala, P., Jussila, J., Aramo-Immonen, H., & Suominen, A. (2018). Systematic Literature Review on Customer Emotions in Social Media. In V. Cunnane, & N. Corcoran (Eds.), <i>ECSM 2018 : Proceedings of the 5th European Conference on Social Media</i> (pp. 154-162). Academic Conferences and Publishing International Limited.
dc.identifier.otherCONVID_28153502
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/58870
dc.description.abstractCustomers are human beings who express their emotions openly on social media platforms. There is a wealth of social media data that companies can make use of to improve their business decision making and tailor their marketing strategies. In order to benefit from this, organizations need to apply computational methods, which can save time and effort rather than applying traditional consumer research approaches, such as surveys or interviews. The purpose of this study is to investigate existing computational studies on detecting consumer emotions from social media data. We conducted a systematic literature review on articles published in ScienceDirect, IEEE Explore, ACM Digital Library, and Emerald Insight from the period 2009-2017. The aim was to discover how social media data was extracted, how large datasets were used in detecting emotions, the type of computational methods used, and the accuracy of the results obtained from the existing studies. Most of the studies were focused on sentiment analysis and different machine learning algorithms. The computational methods were applied in business decision making and marketing functions. Practical scenarios included emotion detection in customer reviews and sentiment analysis of retail brands. Based on these studies, we have uncovered situations where the results of the analysis are either sufficiently accurate or supportive for decision making. We provide recommendations for organizations and managers on developing their resources to make use of different computational methods for emotion and sentiment detection. Finally, we present the limitations of these methods and provide recommendations for aligning future research studies toward big social data analytics on customer emotions.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAcademic Conferences and Publishing International Limited
dc.relation.ispartofECSM 2018 : Proceedings of the 5th European Conference on Social Media
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherconsumer behavior
dc.subject.othersentiment analysis
dc.titleSystematic Literature Review on Customer Emotions in Social Media
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-201807053476
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2018-07-05T06:15:09Z
dc.relation.isbn978-1-911218-84-5
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange154-162
dc.type.versionpublishedVersion
dc.rights.copyright© the Authors, 2018.
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceEuropean Conference on Social Media
dc.subject.ysososiaalinen media
dc.subject.ysobig data
dc.subject.ysokuluttajakäyttäytyminen
dc.subject.ysotunteet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p20774
jyx.subject.urihttp://www.yso.fi/onto/yso/p27202
jyx.subject.urihttp://www.yso.fi/onto/yso/p8576
jyx.subject.urihttp://www.yso.fi/onto/yso/p3485
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0