Show simple item record

dc.contributor.authorChung, Francis J.
dc.contributor.authorOla, Petri
dc.contributor.authorSalo, Mikko
dc.contributor.authorTzou, Leo
dc.date.accessioned2018-01-16T10:10:02Z
dc.date.available2019-07-14T21:35:20Z
dc.date.issued2018
dc.identifier.citationChung, F. J., Ola, P., Salo, M., & Tzou, L. (2018). Partial data inverse problems for Maxwell equations via Carleman estimates. <i>Annales de l'Institut Henri Poincare (C) Non Linear Analysis</i>, <i>35</i>(3), 605-624. <a href="https://doi.org/10.1016/j.anihpc.2017.06.005" target="_blank">https://doi.org/10.1016/j.anihpc.2017.06.005</a>
dc.identifier.otherCONVID_27121440
dc.identifier.otherTUTKAID_74454
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/56747
dc.description.abstractIn this article we consider an inverse boundary value problem for the time-harmonic Maxwell equations. We show that the electromagnetic material parameters are determined by boundary measurements where part of the boundary data is measured on a possibly very small set. This is an extension of earlier scalar results of Bukhgeim–Uhlmann and Kenig–Sjöstrand–Uhlmann to the Maxwell system. The main contribution is to show that the Carleman estimate approach to scalar partial data inverse problems introduced in those works can be carried over to the Maxwell system.en
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesAnnales de l'Institut Henri Poincare (C) Non Linear Analysis
dc.subject.otherpartial data
dc.subject.otheradmissible manifolds
dc.subject.otherCarleman estimates
dc.titlePartial data inverse problems for Maxwell equations via Carleman estimates
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201801121164
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-01-12T10:15:14Z
dc.type.coarjournal article
dc.description.reviewstatuspeerReviewed
dc.format.pagerange605-624
dc.relation.issn0294-1449
dc.relation.numberinseries3
dc.relation.volume35
dc.type.versionacceptedVersion
dc.rights.copyright© 2017 Elsevier Masson SAS. This is a final draft version of an article whose final and definitive form has been published by Elsevier. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber307023
dc.relation.grantnumber307023
dc.relation.grantnumber284715 HY
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/307023/EU//InvProbGeomPDE
dc.subject.ysoMaxwellin yhtälöt
dc.subject.ysoinversio-ongelmat
jyx.subject.urihttp://www.yso.fi/onto/yso/p28528
jyx.subject.urihttp://www.yso.fi/onto/yso/p27912
dc.relation.doi10.1016/j.anihpc.2017.06.005
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuropean Commissionen
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramEU:n 7. puiteohjelma (FP7)fi
jyx.fundingprogramHuippuyksikkörahoitus, SAfi
jyx.fundingprogramFP7 (EU's 7th Framework Programme)en
jyx.fundingprogramCentre of Excellence, AoFen
jyx.fundinginformationF.C., P.O. and M.S. were partly supported by the Academy of Finland (Centre of Excellence in Inverse Problems Research) (284715), F.C. and M.S. were supported by an ERC Starting Grant (grant agreement no 307023), and M.S. was also supported by CNRS. L.T. was partly supported by the Academy of Finland (decision no 271929), Vetenskapsrådet (decision no 2012-3782), and Australian Research Council Future Fellowship (FT130101346). F.C., M.S. and L.T. would like to acknowledge the hospitality of the Institut Henri Poincaré Program on Inverse Problems in 2015, and F.C. would like to acknowledge the University of Jyväskylä for its hospitality on subsequent visits.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record