Partial data inverse problems for the Hodge Laplacian
Chung, F. J., Salo, M., & Tzou, L. (2017). Partial data inverse problems for the Hodge Laplacian. Analysis and PDE, 10(1), 43-93. https://doi.org/10.2140/apde.2017.10.43
Julkaistu sarjassa
Analysis and PDEPäivämäärä
2017Tekijänoikeudet
© the Authors, 2017. Published in this repository with the kind permission of the publisher.
We prove uniqueness results for a Calderón-type inverse problem for the Hodge Laplacian acting on graded forms on certain manifolds in three dimensions. In particular, we show that partial measurements of the relative-to-absolute or absolute-to-relative boundary value maps uniquely determine a zeroth-order potential. The method is based on Carleman estimates for the Hodge Laplacian with relative or absolute boundary conditions, and on the construction of complex geometrical optics solutions which reduce the Calderón-type problem to a tomography problem for 2-tensors. The arguments in this paper allow us to establish partial data results for elliptic systems that generalize the scalar results due to Kenig, Sjöstrand and Uhlmann.
Julkaisija
Mathematical Sciences PublishersISSN Hae Julkaisufoorumista
2157-5045Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26894714
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
Partial data inverse problems for Maxwell equations via Carleman estimates
Chung, Francis J.; Ola, Petri; Salo, Mikko; Tzou, Leo (Elsevier, 2018)In this article we consider an inverse boundary value problem for the time-harmonic Maxwell equations. We show that the electromagnetic material parameters are determined by boundary measurements where part of the boundary ... -
Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations
Lassas, Matti; Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko (European Mathematical Society Publishing House, 2021)We study various partial data inverse boundary value problems for the semilinear elliptic equation Δu + a(x, u) = 0 in a domain in Rn by using the higher order linearization technique introduced by Lassas– Liimatainen–Lin–Salo ... -
Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems
Covi, Giovanni; Mönkkönen, Keijo; Railo, Jesse (American Institute of Mathematical Sciences (AIMS), 2021)We prove a unique continuation property for the fractional Laplacian (−Δ)s when s∈(−n/2,∞)∖Z where n≥1. In addition, we study Poincaré-type inequalities for the operator (−Δ)s when s≥0. We apply the results to show that ... -
The Calderón problem for the fractional Schrödinger equation
Ghosh, Tuhin; Salo, Mikko; Uhlmann, Gunther (Mathematical Sciences Publishers, 2020)We show global uniqueness in an inverse problem for the fractional Schrödinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.