Partial data inverse problems for Maxwell equations via Carleman estimates
Chung, F. J., Ola, P., Salo, M., & Tzou, L. (2018). Partial data inverse problems for Maxwell equations via Carleman estimates. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 35(3), 605-624. https://doi.org/10.1016/j.anihpc.2017.06.005
Julkaistu sarjassa
Annales de l'Institut Henri Poincare (C) Non Linear AnalysisPäivämäärä
2018Tekijänoikeudet
© 2017 Elsevier Masson SAS. This is a final draft version of an article whose final and definitive form has been published by Elsevier. Published in this repository with the kind permission of the publisher.
In this article we consider an inverse boundary value problem for the time-harmonic Maxwell equations. We show that the electromagnetic material parameters are determined by boundary measurements where part of the boundary data is measured on a possibly very small set. This is an extension of earlier scalar results of Bukhgeim–Uhlmann and Kenig–Sjöstrand–Uhlmann to the Maxwell system. The main contribution is to show that the Carleman estimate approach to scalar partial data inverse problems introduced in those works can be carried over to the Maxwell system.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0294-1449Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27121440
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Euroopan komissio; Suomen AkatemiaRahoitusohjelmat(t)
EU:n 7. puiteohjelma (FP7); Huippuyksikkörahoitus, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
F.C., P.O. and M.S. were partly supported by the Academy of Finland (Centre of Excellence in Inverse Problems Research) (284715), F.C. and M.S. were supported by an ERC Starting Grant (grant agreement no 307023), and M.S. was also supported by CNRS. L.T. was partly supported by the Academy of Finland (decision no 271929), Vetenskapsrådet (decision no 2012-3782), and Australian Research Council Future Fellowship (FT130101346). F.C., M.S. and L.T. would like to acknowledge the hospitality of the Institut Henri Poincaré Program on Inverse Problems in 2015, and F.C. would like to acknowledge the University of Jyväskylä for its hospitality on subsequent visits. ...Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Partial data inverse problems for the Hodge Laplacian
Chung, Francis J.; Salo, Mikko; Tzou, Leo (Mathematical Sciences Publishers, 2017)We prove uniqueness results for a Calderón-type inverse problem for the Hodge Laplacian acting on graded forms on certain manifolds in three dimensions. In particular, we show that partial measurements of the relative-to-absolute ... -
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
Determining an unbounded potential for an elliptic equation with a power type nonlinearity
Nurminen, Janne (Elsevier, 2023)In this article we focus on inverse problems for a semilinear elliptic equation. We show that a potential q in ��/2+�, �>0, can be determined from the full and partial Dirichlet-to-Neumann map. This extends the results ... -
An inverse problem for the minimal surface equation
Nurminen, Janne (Elsevier, 2023)We use the method of higher order linearization to study an inverse boundary value problem for the minimal surface equation on a Riemannian manifold , where the metric is conformally Euclidean. In particular we show that ... -
Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds
Krupchyk, Katya; Liimatainen, Tony; Salo, Mikko (Elsevier Inc., 2022)In this article we study the linearized anisotropic Calderón problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.