Determining an unbounded potential for an elliptic equation with a power type nonlinearity
Nurminen, J. (2023). Determining an unbounded potential for an elliptic equation with a power type nonlinearity. Journal of Mathematical Analysis and Applications, 523(1), Article 126962. https://doi.org/10.1016/j.jmaa.2022.126962
Julkaistu sarjassa
Journal of Mathematical Analysis and ApplicationsTekijät
Päivämäärä
2023Tekijänoikeudet
© 2023 The Author(s). Published by Elsevier Inc.
In this article we focus on inverse problems for a semilinear elliptic equation. We show that a potential q in ��/2+�, �>0, can be determined from the full and partial Dirichlet-to-Neumann map. This extends the results from [LLLS21b] where this is shown for Hölder continuous potentials. Also we show that when the Dirichlet-to-Neumann map is restricted to one point on the boundary, it is possible to determine a potential q in ��+�. The authors of [ST22] proved this to be true for Hölder continuous potentials.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0022-247XAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/172580071
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Huippuyksikkörahoitus, SALisätietoja rahoituksesta
The author was supported by the Finnish Centre of Excellence in Inverse Modelling and Imaging (Academy of Finland grant 284715).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations
Lassas, Matti; Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko (European Mathematical Society Publishing House, 2021)We study various partial data inverse boundary value problems for the semilinear elliptic equation Δu + a(x, u) = 0 in a domain in Rn by using the higher order linearization technique introduced by Lassas– Liimatainen–Lin–Salo ... -
Inverse problems for elliptic equations with fractional power type nonlinearities
Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko; Tyni, Teemu (Elsevier, 2022)We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain ... -
Increasing stability in the linearized inverse Schrödinger potential problem with power type nonlinearities
Lu, Shuai; Salo, Mikko; Xu, Boxi (IOP Publishing, 2022)We consider increasing stability in the inverse Schrödinger potential problem with power type nonlinearities at a large wavenumber. Two linearization approaches, with respect to small boundary data and small potential ... -
Inverse problems for elliptic equations with power type nonlinearities
Lassas, Matti; Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko (Elsevier, 2021)We introduce a method for solving Calderón type inverse problems for semilinear equations with power type nonlinearities. The method is based on higher order linearizations, and it allows one to solve inverse problems for ... -
Inverse problems for semilinear elliptic PDE with measurements at a single point
Salo, Mikko; Tzou, Leo (American Mathematical Society (AMS), 2023)We consider the inverse problem of determining a potential in a semilinear elliptic equation from the knowledge of the Dirichlet-to-Neumann map. For bounded Euclidean domains we prove that the potential is uniquely determined ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.