dc.contributor.author | Ferreira, David Dos Santos | |
dc.contributor.author | Kenig, Carlos E. | |
dc.contributor.author | Salo, Mikko | |
dc.date.accessioned | 2018-01-12T11:11:25Z | |
dc.date.available | 2018-01-12T11:11:25Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Ferreira, D. D. S., Kenig, C. E., & Salo, M. (2013). Determining an unbounded potential from Cauchy data in admissible geometries. <i>Communications in Partial Differential Equations</i>, <i>38</i>(1), 50-68. <a href="https://doi.org/10.1080/03605302.2012.736911" target="_blank">https://doi.org/10.1080/03605302.2012.736911</a> | |
dc.identifier.other | CONVID_23107942 | |
dc.identifier.other | TUTKAID_59878 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/56705 | |
dc.description.abstract | In [4 Dos Santos Ferreira , D. , Kenig , C.E. , Salo , M. , Uhlmann , G. ( 2009 ). Limiting Carleman weights and anisotropic inverse problems . Invent. Math. 178 : 119 – 171 .
[Crossref], [Web of Science ®], [Google Scholar]
] anisotropic inverse problems were considered in certain admissible geometries, that is, on compact Riemannian manifolds with boundary which are conformally embedded in a product of the Euclidean line and a simple manifold. In particular, it was proved that a bounded smooth potential in a Schrödinger equation was uniquely determined by the Dirichlet-to-Neumann map in dimensions n ≥ 3. In this article we extend this result to the case of unbounded potentials, namely those in L n/2. In the process, we derive L p Carleman estimates with limiting Carleman weights similar to the Euclidean estimates of Jerison and Kenig [8 Jerison , D. , Kenig , C.E. ( 1985 ). Unique continuation and absence of positive eigenvalues for Schrödinger operators . Ann. Math. 121 : 463 – 494 .
[Crossref], [Web of Science ®], [Google Scholar]
] and Kenig et al. [9 Kenig , C.E. , Ruiz , A. , Sogge , C.D. ( 1987 ). Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators . Duke Math. J. 55 : 329 – 347 .
[Crossref], [Web of Science ®], [Google Scholar]
]. | |
dc.language.iso | eng | |
dc.publisher | Taylor & Francis | |
dc.relation.ispartofseries | Communications in Partial Differential Equations | |
dc.relation.uri | http://dx.doi.org/10.1080/03605302.2012.736911 | |
dc.subject.other | Attenuated geodesic ray transform | |
dc.subject.other | Calderón inverse problem | |
dc.subject.other | Carleman estimates | |
dc.subject.other | Complex geometrical optics | |
dc.subject.other | Spectral cluster | |
dc.title | Determining an unbounded potential from Cauchy data in admissible geometries | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201801121162 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Inversio-ongelmien huippuyksikkö | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.contributor.oppiaine | Centre of Excellence in Inverse Problems | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2018-01-12T10:15:06Z | |
dc.type.coar | journal article | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 50-68 | |
dc.relation.issn | 0360-5302 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 38 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Taylor & Francis Group, LLC, 2013. This is a final draft version of an article whose final and definitive form has been published by Taylor & Francis Group, LLC. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.doi | 10.1080/03605302.2012.736911 | |