Näytä suppeat kuvailutiedot

dc.contributor.advisorParkkonen, Jouni
dc.contributor.authorHyvönen, Jussi
dc.date.accessioned2017-12-24T14:57:16Z
dc.date.available2017-12-24T14:57:16Z
dc.date.issued2017
dc.identifier.otheroai:jykdok.linneanet.fi:1809834
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/56542
dc.description.abstractTässä tutkielmassa käsittellään projektiivista geometriaa aksioomien ja mallien kautta. Tutkielma keskittyy pääasiassa äärellisiin projektiivisiin geometrioihin ja niistä erityisesti tasogeometriaan. Tutkielmassa luodaan kirjallisuuskatsaus projektiivisen geometrian alkuvaiheiden kautta aksioomajärjestelmän luomiseen ja päätyen tutustumaan yksinkertaisimpiin malleihin projektiiviselta tasolta. Samalla tulee todistettua myös projektiivisen geometrian peruslause ja tutustuttua projektiivisen geometrian hyödyllisyyteen käsiteltäessä euklidisen geometrian tilanteita. Euklidisessa geometriassa vallitsevia lauseita voidaan nimittäin tulkita projektiivisessa geometriassa ja tällöin projektiivisen geometrian ominaisuudet mahdollistavat todistusten huomattavan yksinkertaistamisen. Tutkielman viimeisessa kappaleessa on esimerkkeinä tästä käsittelyssä Desarguesin ja Pappusin lauseet. Projektiivisen geometrian tutkimuksen voidaan katsoa alkaneen jo 1400-luvulla kuvataiteessa ilmenneiden ongelmien seurauksena. Kuvataiteilijat halusivat löytää yhä parempia keinoja taltioida maailmaa mahdollisimman realistisen näköisenä maalauskankaalle ja tässä huomattiin perspektiivisestä tarkastelusta olevan huomattavaa hyötyä. Ala on sen jälkeen kehittynyt sykäyksittäin, kunnes lopulta on voitu todeta kyseessä olevan täysin oma geometriansa toimivine aksioomajärjestelmineen. Projektiivisen geometrian suurin ero euklidiseen geometriaan on paralleeliaksiooman puuttuminen. Näin ollen projektiivisessa geometriassa mitkä tahansa kaksi suoraa leikkaavat toisensa jossain pisteessä. Euklidisen geometrian yhdensuuntaisia suoria vastaavien suorien leikkauspiste sijaitsee äärettömyydessä ja siitä käytetään nimitystä ideaalipiste. Ideaalipisteitä ja ideaalipisteiden muodostamaa suoraa voidaan tutkia algebrallisesti yhdessä muiden pisteiden ja suorien kanssa käyttämällä hyväksi homogeenisiä koordinaatteja, joihin tutustutaan myös tässä tutkielmassa. Tämän tutkielman keskiössä ovat Rey Cassen ja David Brannanin teokset projektiivisesta geometriasta. Tutkielmassa esitetty projektiivisen geometrian aksioomajärjestelmä on Rey Cassen muotoilema. Myös hieman eri tavalla muotoiltuja, mutta yhtäpitäviä versioita on julkaistu.fi
dc.format.extent1 verkkoaineisto (32 sivua)
dc.language.isofin
dc.rightsIn Copyrighten
dc.subject.otherprojektiivinen geometria
dc.subject.othertasogeometria
dc.subject.otheraksioomajärjestelmä
dc.subject.otherideaalipiste
dc.subject.otherhomogeeniset koordinaatit
dc.subject.otherkuntataso
dc.subject.otherFanon-taso
dc.subject.otherprojektiivinen kuvaus
dc.titleProjektiivinen geometria
dc.typemaster thesis
dc.identifier.urnURN:NBN:fi:jyu-201712244881
dc.type.ontasotPro gradufi
dc.type.ontasotMaster's thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.date.updated2017-12-24T14:57:16Z
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.rights.accesslevelopenAccessfi
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4041
dc.subject.ysoprojektiivinen geometria
dc.subject.ysogeometria
dc.subject.ysoaksioomat
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright