University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Eukleideen geometriaa

Thumbnail
View/Open
465.7 Kb

Downloads:  
Show download detailsHide download details  
Authors
Joutsen, Elina
Date
2018
Discipline
MatematiikkaMathematics

 
Eukleides Aleksandrialainen oli kreikkalainen matemaatikko, joka loi noin 300 eaa. euklidisen geometrian. Hän julkaisi euklidisen geometrian perustana olevat aksioomat ja perusolettamukset teoksessaan Alkeet. Eukleideen teos on säilynyt koulujen geometrian opetuksen pohjana jopa 1800–luvulle asti. Päälähteenä tutkielmassa on käytetty Eukleideen teoksen Pekka Aschanin suomennosta ja sen nykysuomennosta kommentteineen, jonka on toimittanut Lauri Kahanpää teoksessa Alkeet, Kuusi ensimmäistä kirjaa eli tasogeometria. Tutkielma tarkastelee Eukleideen muodostamaa teoriaa. Tavoitteena on ratkaista neljä vaativaa ympyrän ja kolmion välistä ongelmaa Eukleideen teorian pohjalta. Eukleideen aksioomajärjestelmä perustuu viiteen aksioomaan, joiden perusteella geometria pyritään määrittelemään täydellisesti. Alussa esitellään aksioomajärjestelmän kannalta tärkeät yleiset käsitteet, minkä jälkeen kerrotaan lyhyesti aksioomajärjestelmästä ja sen vaatimuksista sekä esitellään Eukleideen viisi aksioomaa. Tutkielman tärkein teema on tarvittavan euklidisen teorian kokoaminen geometristen ongelmien ratkaisemiseksi. Tutkielman seuraavassa vaiheessa tarkastellaan kolmioiden ja ympyröiden geometrisia ominaisuuksia. Lisäksi esitellään kyseisten ongelmien ratkaisemisen kannalta tarpeellisia käytännön esimerkkejä, jotka perustuvat harppi–viivain konstruktioihin. Teorian pohjalta ratkaistaan näamä neljä ongelmaa: annetun ympyrän sisään on piirrettävä kolmio, annetun ympyrän ympäri on piirrettävä kolmio, annetun kolmion sisään on piirrettävä ympyrä sekä annetun kolmion ympäri on piirrettävä ympyrä. Tarkastelun lopuksi esitellään Eukleideen aksioomajärjestelmää nykyaikaisempi Hilbertin aksioomajärjestelmä euklidiselle geometrialle. David Hilbertin aksioomaj¨arjestelm¨a julkaistiin vuonna 1899 ja se on huomattavasti laajempi ja tarkempi kuin Eukleideen aksioomajärjestelmä. Lopuksi verrataan Eukleideen aksioomajärjestelmää Hilbertin aksioomajärjestelmään ja erityisesti tarkastellaan Eukleideen viidettä aksioomaa. Vertailun tarkoituksena on havainnollistaa Eukleideen teorian mahdollisia ongelmakohtia. ...
Keywords
geometria euklidinen geometria aksioomat
URI

http://urn.fi/URN:NBN:fi:jyu-201803161748

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [24542]

Related items

Showing items with similar title or keywords.

  • Klassista projektiivista geometriaa 

    Leppänen, Konsta (2017)
  • Euklidisen ja hyperbolisen geometrian malleja 

    Salmela, Erkki (2008)
  • Circular Forms in Aleksis Kivi’s Texts 

    Kukkonen, Tiina Katriina (Tessellations Publishing, 2016)
    In this paper, I identify and analyse regular geometric forms that appear in nineteenth-century Finnish author Aleksis Kivi’s texts. His characters and his narrators exemplify these forms to the reader. The characters’ ...
  • Matemaattista biljardia ja geometriaa 

    Hovinmäki, Noora (2020)
    Tämän tutkielman tarkoituksena on avata matemaattisen tasobiljardin keskeisiä tuloksia geometrian keinoin. Lisäksi tavoitteena on muodostaa lukioikäisille suunnattu biljardigeometriaan liittyvä tehtäväkokonaisuus, jonka ...
  • Hyperbolista geometriaa 

    Linjama, Juhana (2014)
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre