Random cutout sets with spatially inhomogeneous intensities
Ojala, T., Suomala, V., & Wu, M. (2017). Random cutout sets with spatially inhomogeneous intensities. Israel Journal of Mathematics, 220(2), 899-925. https://doi.org/10.1007/s11856-017-1524-9
Published in
Israel Journal of MathematicsDate
2017Copyright
© Hebrew University of Jerusalem 2017. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
We study the Hausdorff dimension of Poissonian cutout sets defined
via inhomogeneous intensity measures on Q-regular metric spaces. Our main results
explain the dependence of the dimension of the cutout sets on the multifractal
structure of the average densities of the Q-regular measure. As a corollary, we
obtain formulas for the Hausdorff dimension of such cutout sets in self-similar and
self-conformal spaces using the multifractal decomposition of the average densities
for the natural measures.
Publisher
Springer; Hebrew University Magnes PressISSN Search the Publication Forum
0021-2172Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/26998307
Metadata
Show full item recordCollections
Related items
Showing items with similar title or keywords.
-
Generalized dimension distortion under Sobolev mappings
Zapadinskaya, Aleksandra (University of Jyväskylä, 2011) -
Weakly controlled Moran constructions and iterated functions systems in metric spaces
Rajala, Tapio; Vilppolainen, Markku (University of Illinois, 2011)We study the Hausdorff measures of limit sets of weakly controlled Moran constructions in metric spaces. The separation of the construction pieces is closely related to the Hausdorff measure of the corresponding limit set. ... -
Mappings of finite distortion : gauge dimension of generalized quasi-circles
Herron, D. A.; Koskela, Pekka (University of Illinois Press, 2003)We determine the correct dimension gauge for measuring generalized quasicircles (the images of a circle under so-called µ-homeomorphisms). We establish a sharp modulus of continuity estimate for the inverse of a homeomorphism ... -
Lebesguen mitan kiertoinvarianttisuus ja Hausdorffin mitta
Salo, Henna-Kaisa (2019)Tämän tutkielman tarkoituksena on osoittaa, että Lebesguen mitta on kiertoinvariantti, sekä esitellä lukijalle Hausdorffin mitta ja sen ominaisuuksia. Lebesguen mitan kiertoinvarianttisuuden todistus vaatii paljon esitietoja, ... -
Efficient spatial designs using Hausdorff distances and Bayesian optimization
Paglia, Jacopo; Eidsvik, Jo; Karvanen, Juha (Wiley-Blackwell, 2022)An iterative Bayesian optimisation technique is presented to find spatial designs of data that carry much information. We use the decision theoretic notion of value of information as the design criterion. Gaussian process ...