Uniqueness of positive solutions to some Nonlinear Neumann Problems
Wan, Y., & Xiang, C. (2017). Uniqueness of positive solutions to some Nonlinear Neumann Problems. Journal of Mathematical Analysis and Applications, 455(2), 1835-1847. https://doi.org/10.1016/j.jmaa.2017.06.006
Julkaistu sarjassa
Journal of Mathematical Analysis and ApplicationsPäivämäärä
2017Tekijänoikeudet
© 2017 Elsevier Inc. This is a final draft version of an article whose final and definitive form has been published by Elsevier. Published in this repository with the kind permission of the publisher.
Using the moving plane method, we obtain a Liouville type theorem for
nonnegative solutions of the Neumann problem
⎧
⎨
⎩
div (ya∇u(x, y)) = 0, x ∈ Rn,y > 0,
lim y→0+yauy(x, y) = −f(u(x, 0)), x ∈ Rn,
under general nonlinearity assumptions on the function f : R → R for any constant
a ∈ (−1, 1).
Julkaisija
Academic PressISSN Hae Julkaisufoorumista
0022-247XJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27095003
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Landis-type conjecture for the half-Laplacian
Kow, Pu-Zhao; Wang, Jenn-Nan (American Mathematical Society (AMS), 2023)In this paper, we study the Landis-type conjecture, i.e., unique continuation property from infinity, of the fractional Schrödinger equation with drift and potential terms. We show that if any solution of the equation ... -
Conformality and Q-harmonicity in sub-Riemannian manifolds
Capogna, Luca; Citti, Giovanna; Le Donne, Enrico; Ottazzi, Alessandro (Elsevier Masson, 2019)We establish regularity of conformal maps between sub-Riemannian manifolds from regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth in all contact ... -
A nontraditional approach for solving the Neumann problem by the finite element method
Křižek, Michal; Neittaanmäki, Pekka; Vondrák, Miroslav (Sociedade Brasileira de Matemática Aplicada e Computacional, 1992)We present a new variational formulation of a second order order elliptic problem with the Neumann boundary conditions. This formulation does not require any quotient spaces and is advisable for finite element approximations. -
A posteriori error estimates for variational problems in the theory of viscous fluids
Nokka, Marjaana (University of Jyväskylä, 2016)The papers included in the thesis are focused on functional type a posteriori error estimates for the Stokes problem, the Stokes problem with friction type boundary conditions, the Oseen problem, and the anti-plane Bingham ... -
Increasing stability in the linearized inverse Schrödinger potential problem with power type nonlinearities
Lu, Shuai; Salo, Mikko; Xu, Boxi (IOP Publishing, 2022)We consider increasing stability in the inverse Schrödinger potential problem with power type nonlinearities at a large wavenumber. Two linearization approaches, with respect to small boundary data and small potential ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.