Show simple item record

dc.contributor.authorWan, Youyan
dc.contributor.authorXiang, Changlin
dc.date.accessioned2017-08-08T08:32:41Z
dc.date.available2019-06-30T21:35:16Z
dc.date.issued2017
dc.identifier.citationWan, Y., & Xiang, C. (2017). Uniqueness of positive solutions to some Nonlinear Neumann Problems. <em>Journal of Mathematical Analysis and Applications</em>, 455 (2), 1835-1847. <a href="https://doi.org/10.1016/j.jmaa.2017.06.006">doi:10.1016/j.jmaa.2017.06.006</a>
dc.identifier.otherTUTKAID_74306
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/55015
dc.description.abstractUsing the moving plane method, we obtain a Liouville type theorem for nonnegative solutions of the Neumann problem ⎧ ⎨ ⎩ div (ya∇u(x, y)) = 0, x ∈ Rn,y > 0, lim y→0+yauy(x, y) = −f(u(x, 0)), x ∈ Rn, under general nonlinearity assumptions on the function f : R → R for any constant a ∈ (−1, 1).
dc.language.isoeng
dc.publisherAcademic Press
dc.relation.ispartofseriesJournal of Mathematical Analysis and Applications
dc.subject.otherpartial differential equations
dc.subject.otherNeumann problem
dc.subject.otherLiouville type theorem
dc.subject.othermoving plane method
dc.titleUniqueness of positive solutions to some Nonlinear Neumann Problems
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201708043415
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikka
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-08-04T09:15:08Z
dc.type.coarjournal article
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1835-1847
dc.relation.issn0022-247X
dc.relation.volume455
dc.type.versionacceptedVersion
dc.rights.copyright© 2017 Elsevier Inc. This is a final draft version of an article whose final and definitive form has been published by Elsevier. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.doi10.1016/j.jmaa.2017.06.006


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record