dc.contributor.author | Karak, Nijjwal | |
dc.date.accessioned | 2017-05-09T07:53:42Z | |
dc.date.available | 2017-05-09T07:53:42Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Karak, N. (2017). Generalized Lebesgue points for Sobolev functions. <i>Czechoslovak Mathematical Journal</i>, <i>67</i>(1), 143-150. <a href="https://doi.org/10.21136/CMJ.2017.0405-15" target="_blank">https://doi.org/10.21136/CMJ.2017.0405-15</a> | |
dc.identifier.other | CONVID_26892570 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/53839 | |
dc.description.abstract | In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point x in a metric measure space (X, d, μ) is called a generalized Lebesgue point of a measurable function f if the medians of f over the balls B(x, r) converge to f(x) when r converges to 0. We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function. We show that a function f ∈ Ms,p(X), 0 < s ≤ 1, 0 < p < 1, where X is a doubling metric measure space, has generalized Lebesgue points outside a set of Hh-Hausdorff measure zero for a suitable gauge function h. | |
dc.language.iso | eng | |
dc.publisher | Academy of Sciences of the Czech Republic; Springer | |
dc.relation.ispartofseries | Czechoslovak Mathematical Journal | |
dc.subject.other | Sobolev space | |
dc.subject.other | metric measure space | |
dc.subject.other | median | |
dc.subject.other | generalized Lebesgue point | |
dc.title | Generalized Lebesgue points for Sobolev functions | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201705052212 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2017-05-05T12:15:13Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 143-150 | |
dc.relation.issn | 0011-4642 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 67 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2017. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.doi | 10.21136/CMJ.2017.0405-15 | |
dc.type.okm | A1 | |