University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Artikkelit
  • Matemaattis-luonnontieteellinen tiedekunta
  • View Item
JYX > Artikkelit > Matemaattis-luonnontieteellinen tiedekunta > View Item

Generalized Lebesgue points for Sobolev functions

ThumbnailPublisher's PDF
View/Open
153.5 Kb

Downloads:  
Show download detailsHide download details  
Karak, N. (2017). Generalized Lebesgue points for Sobolev functions. Czechoslovak Mathematical Journal, 67(1), 143-150. https://doi.org/10.21136/CMJ.2017.0405-15
Published in
Czechoslovak Mathematical Journal
Authors
Karak, Nijjwal
Date
2017
Discipline
MatematiikkaMathematics
Copyright
© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2017. Published in this repository with the kind permission of the publisher.

 
In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point x in a metric measure space (X, d, μ) is called a generalized Lebesgue point of a measurable function f if the medians of f over the balls B(x, r) converge to f(x) when r converges to 0. We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function. We show that a function f ∈ Ms,p(X), 0 < s ≤ 1, 0 < p < 1, where X is a doubling metric measure space, has generalized Lebesgue points outside a set of Hh-Hausdorff measure zero for a suitable gauge function h.
Publisher
Academy of Sciences of the Czech Republic; Springer
ISSN Search the Publication Forum
0011-4642
Keywords
Sobolev space metric measure space median generalized Lebesgue point
DOI
https://doi.org/10.21136/CMJ.2017.0405-15
URI

http://urn.fi/URN:NBN:fi:jyu-201705052212

Publication in research information system

https://converis.jyu.fi/converis/portal/detail/Publication/26892570

Metadata
Show full item record
Collections
  • Matemaattis-luonnontieteellinen tiedekunta [4954]

Related items

Showing items with similar title or keywords.

  • Approximation and Quasicontinuity of Besov and Triebel–Lizorkin Functions 

    Heikkinen, Toni; Koskela, Pekka; Tuominen, Heli (American Mathematical Society, 2017)
    We show that, for 0 < s < 1, 0 < p, q < ∞, Haj lasz–Besov and Haj lasz–Triebel–Lizorkin functions can be approximated in the norm by discrete median convolutions. This allows us to show that, for these functions, the ...
  • Muckenhoupt Ap-properties of Distance Functions and Applications to Hardy-Sobolev -type Inequalities 

    Dyda, Bartłomiej; Ihnatsyeva, Lizaveta; Lehrbäck, Juha; Tuominen, Heli; Vähäkangas, Antti (Springer, 2019)
  • Pointwise inequalities for Sobolev functions on generalized cuspidal domains 

    Zhu, Zheng (Finnish Mathematical Society, 2022)
    Olkoon Ω⊂Rn−1 rajoitettu tähtimäinen alue ja Ωψ ulkoneva kärkialue, jonka kanta-alue on Ω. Arvoilla 1< p≤ ∞ osoitamme, että W1,p(Ωψ) = M1,p(Ωψ) jos ja vain jos W1,p(Ω) = M1,p(Ω).
  • Notions of Dirichlet problem for functions of least gradient in metric measure spaces 

    Korte, Riikka; Lahti, Panu; Li, Xining; Shanmugalingam, Nageswari (European Mathematical Society Publishing House, 2019)
    We study two notions of Dirichlet problem associated with BV energy minimizers (also called functions of least gradient) in bounded domains in metric measure spaces whose measure is doubling and supports a (1, 1)-Poincaré ...
  • Differential of metric valued Sobolev maps 

    Gigli, Nicola; Pasqualetto, Enrico; Soultanis, Elefterios (Elsevier, 2020)
    We introduce a notion of differential of a Sobolev map between metric spaces. The differential is given in the framework of tangent and cotangent modules of metric measure spaces, developed by the first author. We prove ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre