Approximation and Quasicontinuity of Besov and Triebel–Lizorkin Functions
Heikkinen, T., Koskela, P., & Tuominen, H. (2017). Approximation and Quasicontinuity of Besov and Triebel–Lizorkin Functions. Transactions of the American Mathematical Society, 369(5), 3547-3573. https://doi.org/10.1090/tran/6886
Julkaistu sarjassa
Transactions of the American Mathematical SocietyPäivämäärä
2017Tekijänoikeudet
© 2016 American Mathematical Society. This is a final draft version of an article whose final and definitive form has been published by AMS. Published in this repository with the kind permission of the publisher.
We show that, for 0 < s < 1, 0 < p, q < ∞, Haj lasz–Besov and
Haj lasz–Triebel–Lizorkin functions can be approximated in the norm by discrete
median convolutions. This allows us to show that, for these functions, the limit
of medians,
lim
r→0
mγ
u
(B(x, r)) = u
∗
(x),
exists quasieverywhere and defines a quasicontinuous representative of u. The
above limit exists quasieverywhere also for Haj lasz functions u ∈ Ms,p, 0 < s ≤ 1,
0 < p < ∞, but approximation of u in Ms,p by discrete (median) convolutions is
not in general possible.
Julkaisija
American Mathematical SocietyISSN Hae Julkaisufoorumista
0002-9947Asiasanat
Alkuperäislähde
http://www.ams.org/journals/tran/0000-000-00/S0002-9947-2016-06886-5/S0002-9947-2016-06886-5.pdfJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26415576
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Generalized Lebesgue points for Sobolev functions
Karak, Nijjwal (Academy of Sciences of the Czech Republic; Springer, 2017)In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point x in a metric measure space (X, d, μ) is called a generalized Lebesgue point ... -
Muckenhoupt Ap-properties of Distance Functions and Applications to Hardy-Sobolev -type Inequalities
Dyda, Bartłomiej; Ihnatsyeva, Lizaveta; Lehrbäck, Juha; Tuominen, Heli; Vähäkangas, Antti (Springer, 2019) -
Existence and uniqueness of limits at infinity for homogeneous Sobolev functions
Koskela, Pekka; Nguyen, Khanh (Elsevier, 2023)We establish the existence and uniqueness of limits at infinity along infinite curves outside a zero modulus family for functions in a homogeneous Sobolev space under the assumption that the underlying space is equipped ... -
Measurement of the non-prompt D-meson fraction as a function of multiplicity in proton-proton collisions at √s = 13 TeV
ALICE Collaboration (Springer, 2023)The fractions of non-prompt (i.e. originating from beauty-hadron decays) D0 and D+ mesons with respect to the inclusive yield are measured as a function of the charged-particle multiplicity in proton-proton collisions at ... -
Notions of Dirichlet problem for functions of least gradient in metric measure spaces
Korte, Riikka; Lahti, Panu; Li, Xining; Shanmugalingam, Nageswari (European Mathematical Society Publishing House, 2019)We study two notions of Dirichlet problem associated with BV energy minimizers (also called functions of least gradient) in bounded domains in metric measure spaces whose measure is doubling and supports a (1, 1)-Poincaré ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.