On the Construction of Lusternik-Schnirelmann Critical Values with Application to Bifurcation Problems
Nečas, J., Lehtonen, A. & Neittaanmäki, P. (1987). On the Construction of Lusternik-Schnirelmann Critical Values with Application to Bifurcation Problems. Applicable Analysis, 25 (4), 253-268. doi:10.1080/00036818708839689
Published in
Applicable AnalysisDate
1987An iterative method to construct Lusternik-Schnirelmann critical values is presented. Examples of its use to obtain numerical solutions to nonlinear eigenvalue problems and their bifurcation branches are given.
Publisher
Taylor & FrancisISSN Search the Publication Forum
0003-6811Metadata
Show full item recordCollections
Related items
Showing items with similar title or keywords.
-
On the construction of Luster-Schnirelmann critical values with application to bifurcation problems
Nečas, Jindrich; Lehtonen, Ari; Neittaanmäki, Pekka (Taylor & Francis, 1987)An iterative method to construct Lusternik-Schnirelmann critical values is presented. Examples of its use to obtain numerical solutions to nonlinear eigenvalue problems and their bifurcation branches are given. -
Bifurcation method of stability analysis and some applications
Banichuk, Nikolay; Barsuk, Alexander; Neittaanmäki, Pekka; Jeronen, Juha; Tuovinen, Tero (Jyväskylän yliopisto, 2014)In this paper a new approach to the analysis of implicitly given function- als is developed in the frame of elastic stability theory. The approach gives an effective procedure to analyse stability behaviour, and to ... -
Mathematical foundations of the eigenvalue problem in quantum mechanics
Löytäinen, Topi (2016)Työssä tarkastellaan kvanttiteorian ominaisarvo-ongelman matemaattisia perusteita asettamalla vaatimuksia Hilbertin avaruudelle. Työ seuraa läheisesti John von Neumannin käsittelyä kirjassa ’’Mathematical Foundations of ... -
A linear approach for the nonlinear distributed parameter identification problem
Tai, Xue-Cheng; Neittaanmäki, Pekka (Birkhäuser, 1991)In identifying the nonlinear distributed parameters we propose an approach, which enables us to identify the nonlinear distributed parameters by just solving linear problems. In this approach we just need to identify linear ... -
PAINT-SiCon: constructing consistent parametric representations of Pareto sets in nonconvex multiobjective optimization
Hartikainen, Markus; Lovison, Alberto (Springer New York LLC, 2015)We introduce a novel approximation method for multiobjective optimization problems called PAINT–SiCon. The method can construct consistent parametric representations of Pareto sets, especially for nonconvex problems, by ...