Mathematical foundations of the eigenvalue problem in quantum mechanics
Authors
Date
2016Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Työssä tarkastellaan kvanttiteorian ominaisarvo-ongelman matemaattisia perusteita asettamalla vaatimuksia Hilbertin avaruudelle. Työ seuraa läheisesti John von Neumannin käsittelyä kirjassa ’’Mathematical Foundations of Quantum Mechanics’’. Vaatimukset Hilbert avaruudelle, sekä niistä seuraavat teoreemat, on yhteenvedetty lyhyesti. Aiheen käsittelyssä keskitytään Hilbert-avaruuden geometriaan, johon ominaisarvo-ongelman muodostaminen pohjautuu. Lopuksi käsitellään esimerkkiä äärettömän syvästä potentiaalikuopasta, jonka kautta nähdään tarve kvanttiteorian määritelmien ja teoreemien korrektille ymmärtämiselle. The mathematical foundations of the quantum theory are recapitulated up to the formulation of the time-independent eigenvalue problem. The work follows closely to that of John von Neumann in his book the mathematical foundations of quantum mechanics. The requirements set for the Hilbert space and the ensuing theorems are summarized in a prompt manner. The greatest effort is used up in addressing the geometry of Hilbert space. With the theory thus far developed, an overlook into the proper formulation of the eigenvalue problem is stated. The work finishes with an example of the eigenvalue problem in an infinitely deep potential well. The example points out the need of proper understanding of the development of the quantum theory.
Keywords
Metadata
Show full item recordCollections
- Kandidaatintutkielmat [4421]
Related items
Showing items with similar title or keywords.
-
Spectral analysis and quantum chaos in two-dimensional nanostructures
Luukko, Perttu (University of Jyväskylä, 2015)This thesis describes a study into the eigenvalues and eigenstates of twodimensional (2D) quantum systems. The research is summarized in four scientific publications by the author. The underlying motivation for this work ... -
On the mechanical stability and out-of-plane dynamics of a travelling panel submerged in axially flowing ideal fluid : a study into paper production in mathematical terms
Jeronen, Juha (University of Jyväskylä, 2011) -
Kompaktien operaattoreiden spektraaliteoriasta
Horttanainen, Lauri (2008) -
A quantitative reverse Faber-Krahn inequality for the first Robin eigenvalue with negative boundary parameter
Cito, Simone; La Manna, Domenico Angelo (EDP Sciences, 2021)The aim of this paper is to prove a quantitative form of a reverse Faber-Krahn type inequality for the first Robin Laplacian eigenvalue λβ with negative boundary parameter among convex sets of prescribed perimeter. In that ... -
Revealing Hidden Quantum Correlations in an Electromechanical Measurement
Ockeloen-Korppi, C. F.; Damskägg, E.; Paraoanu, G. S.; Massel, Francesco; Sillanpää, M. A. (American Physical Society, 2018)Under a strong quantum measurement, the motion of an oscillator is disturbed by the measurement backaction, as required by the Heisenberg uncertainty principle. When a mechanical oscillator is continuously monitored via ...