Bifurcation method of stability analysis and some applications
Julkaistu sarjassa
Reports of the Department of Mathematical Information Technology / University of Jyväskylä. Series B, Scientific computingTekijät
Päivämäärä
2014In this paper a new approach to the analysis of implicitly given function-
als is developed in the frame of elastic stability theory. The approach gives an
effective procedure to analyse stability behaviour, and to determine the bifur-
cation points. Examples of application of the proposed approach for analysis
of stability are presented, more precisely we consider the stability problem of
an axially moving elastic panel, with no external applied tension, performing
transverse vibrations. The analysis is applicable for many practical cases, for
example, paper making and band saw blades.
Julkaisija
Jyväskylän yliopistoISSN Hae Julkaisufoorumista
1456-436XAsiasanat
Metadata
Näytä kaikki kuvailutiedotSamankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Variational principle and bifurcations in stability analysis of panels
Banichuk, Nikolay; Barsuk, Alexander; Tuovinen, Tero; Jeronen, Juha (Jyväskylän yliopisto, 2014)In this paper, the stability of a simply supported axially moving elastic panel is considered. A complex variable technique and bifurcation theory are applied. As a result, variational equations and a variational principle ... -
On modelling and stability of axially moving viscoelastic materials
Saksa, Tytti (University of Jyväskylä, 2013) -
The stress-strain state and stabilization of viscoelastoplastic, imperfect moving web continuum
Kurki, Matti (University of Jyväskylä, 2014) -
An analytical-numerical study of dynamic stability of an axially moving elastic web
Banichuk, Nikolay; Barsuk, Alexander; Neittaanmäki, Pekka; Jeronen, Juha; Tuovinen, Tero (Jyväskylän yliopisto, 2015)This paper is devoted to a dynamic stability analysis of an axially moving elastic web, modelled as a panel (a plate undergoing cylindrical deformation). The results are directly applicable also to the travelling beam. ... -
Mathematical models and stability analysis of induction motors under sudden changes of load
Solovyeva, Elena (University of Jyväskylä, 2013)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.