dc.contributor.author | Heikkinen, Toni | |
dc.contributor.author | Koskela, Pekka | |
dc.contributor.author | Tuominen, Heli | |
dc.date.accessioned | 2017-02-28T10:05:43Z | |
dc.date.available | 2017-02-28T10:05:43Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Heikkinen, T., Koskela, P., & Tuominen, H. (2017). Approximation and Quasicontinuity of Besov and Triebel–Lizorkin Functions. <i>Transactions of the American Mathematical Society</i>, <i>369</i>(5), 3547-3573. <a href="https://doi.org/10.1090/tran/6886" target="_blank">https://doi.org/10.1090/tran/6886</a> | |
dc.identifier.other | CONVID_26415576 | |
dc.identifier.other | TUTKAID_72270 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/53140 | |
dc.description.abstract | We show that, for 0 < s < 1, 0 < p, q < ∞, Haj lasz–Besov and
Haj lasz–Triebel–Lizorkin functions can be approximated in the norm by discrete
median convolutions. This allows us to show that, for these functions, the limit
of medians,
lim
r→0
mγ
u
(B(x, r)) = u
∗
(x),
exists quasieverywhere and defines a quasicontinuous representative of u. The
above limit exists quasieverywhere also for Haj lasz functions u ∈ Ms,p, 0 < s ≤ 1,
0 < p < ∞, but approximation of u in Ms,p by discrete (median) convolutions is
not in general possible. | |
dc.language.iso | eng | |
dc.publisher | American Mathematical Society | |
dc.relation.ispartofseries | Transactions of the American Mathematical Society | |
dc.relation.uri | http://www.ams.org/journals/tran/0000-000-00/S0002-9947-2016-06886-5/S0002-9947-2016-06886-5.pdf | |
dc.subject.other | Besov space | |
dc.subject.other | Triebel–Lizorkin space | |
dc.subject.other | fractional Sobolev space | |
dc.subject.other | metric measure space | |
dc.subject.other | median | |
dc.subject.other | quasicontinuity | |
dc.title | Approximation and Quasicontinuity of Besov and Triebel–Lizorkin Functions | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201702131428 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2017-02-13T13:15:27Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 3547-3573 | |
dc.relation.issn | 0002-9947 | |
dc.relation.numberinseries | 5 | |
dc.relation.volume | 369 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2016 American Mathematical Society. This is a final draft version of an article whose final and definitive form has been published by AMS. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.doi | 10.1090/tran/6886 | |
dc.type.okm | A1 | |