Regularization and finite element approximation of the wave equation with Dirichlet boundary data
Lasiecka, I., Sokołowski, J. & Neittaanmäki, P. (1990). Regularization and finite element approximation of the wave equation with Dirichlet boundary data. Banach Center Publications, 24 (1), 329-354. Retrieved from https://eudml.org/doc/267771
Published in
Banach Center PublicationsDate
1990Copyright
© the Authors & Polish Academy of Sciences, Institute of Mathematics, 1990.
A numerical method for solving the wave equation with nonhomogenuous,
nonsmooth Dirichlet boundary condition is proposed. Convergence of the
method is proved and some erràr estimates are derived [L-S-2]. The method is
based on the regularization technique [L-1], [L-S-l] of the wave equation with
Dirichlet bounàary data. Several numerical results are provided in two
dimensional case.
Publisher
Polish Academy of Sciences, Institute of MathematicsISSN Search the Publication Forum
0137-6934
Original source
https://eudml.org/doc/267771Metadata
Show full item recordCollections
Related items
Showing items with similar title or keywords.
-
On the convergence of the finite element approximation of eigenfrequencies and eigenvectors to Maxwell's boundary value problem
Neittaanmäki, Pekka; Picard, Rainer (Suomalainen tiedeakatemia, 1981) -
Finite element approximation for a div-rot system with mixed boundary conditions in non-smooth plane domains
Křížek, Michal; Neittaanmäki, Pekka (Československá akademie věd. Matematický ústav., 1984)The authors examine a finite element method for the numerical approximation of the solution to a div-rot system with mixed boundary conditions in bounded plane domains with piecewise smooth boundary. The solvability of the ... -
Recovery of time dependent coefficients from boundary data for hyperbolic equations
Feizmohammadi, Ali; Ilmavirta, Joonas; Kian, Yavar; Oksanen, Lauri (European Mathematical Society - EMS - Publishing House GmbH, 2021)We study uniqueness of the recovery of a time-dependent magnetic vector valued potential and an electric scalar-valued potential on a Riemannian manifold from the knowledge of the Dirichlet-to-Neumann map of a hyperbolic ... -
Boundary Regularity for the Porous Medium Equation
Björn, Anders; Björn, Jana; Gianazza, Ugo; Siljander, Juhana (Springer, 2018)We study the boundary regularity of solutions to the porous medium equation ut=Δum in the degenerate range m>1 . In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data ... -
Harnack’s inequalities and boundary regularity for a general nonlinear parabolic equation in non-divergence form
Kurkinen, Tapio (Jyväskylän yliopisto, 2024)Tässä väitöskirjassa tutkitaan epälineaarista parabolista yhtälöä, jonka erikoistapauksina saadaan <i>p</i>-parabolinen yhtälö ja normalisoitu <i>p</i>-parabolinen yhtälö. Yhtälö poikkeustapauksia lukuunottamatta ei ole ...