Boundary Regularity for the Porous Medium Equation
Björn, A., Björn, J., Gianazza, U., & Siljander, J. (2018). Boundary Regularity for the Porous Medium Equation. Archive for Rational Mechanics and Analysis, 230(2), 493-538. https://doi.org/10.1007/s00205-018-1251-3
Julkaistu sarjassa
Archive for Rational Mechanics and AnalysisPäivämäärä
2018Tekijänoikeudet
© The Author(s) 2018
We study the boundary regularity of solutions to the porous medium equation ut=Δum in the degenerate range m>1 . In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general—not necessarily cylindrical—domains in Rn+1 . One of our fundamental tools is a new strict comparison principle between sub- and superparabolic functions, which makes it essential for us to study both nonstrict and strict Perron solutions to be able to develop a fruitful boundary regularity theory. Several other comparison principles and pasting lemmas are also obtained. In the process we obtain a rather complete picture of the relation between sub/superparabolic functions and weak sub/supersolutions.
...
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0003-9527Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28060705
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Lower semicontinuity of weak supersolutions to the porous medium equation
Avelin, Benny; Lukkari, Teemu (American Mathematical Society, 2015)Weak supersolutions to the porous medium equation are defined by means of smooth test functions under an integral sign. We show that nonnegative weak supersolutions become lower semicontinuous after redefinition on a set ... -
Regularization and finite element approximation of the wave equation with Dirichlet boundary data
Lasiecka, I.; Sokołowski, J.; Neittaanmäki, Pekka (Polish Academy of Sciences, Institute of Mathematics, 1990)A numerical method for solving the wave equation with nonhomogenuous, nonsmooth Dirichlet boundary condition is proposed. Convergence of the method is proved and some erràr estimates are derived [L-S-2]. The method ... -
Harnack’s inequalities and boundary regularity for a general nonlinear parabolic equation in non-divergence form
Kurkinen, Tapio (Jyväskylän yliopisto, 2024)Tässä väitöskirjassa tutkitaan epälineaarista parabolista yhtälöä, jonka erikoistapauksina saadaan <i>p</i>-parabolinen yhtälö ja normalisoitu <i>p</i>-parabolinen yhtälö. Yhtälö poikkeustapauksia lukuunottamatta ei ole ... -
Uniform measure density condition and game regularity for tug-of-war games
Heino, Joonas (International Statistical Institute; Bernoulli Society for Mathematical Statistics and Probability, 2018)We show that a uniform measure density condition implies game regularity for all 2 < p < ∞ in a stochastic game called “tug-of-war with noise”. The proof utilizes suitable choices of strategies combined with estimates for ... -
A systematic approach on the second order regularity of solutions to the general parabolic p-Laplace equation
Feng, Yawen; Parviainen, Mikko; Sarsa, Saara (Springer, 2023)We study a general form of a degenerate or singular parabolic equation ut−|Du|γ(Δu+(p−2)ΔN∞u)=0 that generalizes both the standard parabolic p-Laplace equation and the normalized version that arises from stochastic game ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.