University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Artikkelit
  • Matemaattis-luonnontieteellinen tiedekunta
  • View Item
JYX > Artikkelit > Matemaattis-luonnontieteellinen tiedekunta > View Item

Finite element approximation for a div-rot system with mixed boundary conditions in non-smooth plane domains

ThumbnailPublisher's PDF
View/Open
5.2Mb

Downloads:  
Show download detailsHide download details  
Křížek, M.& Neittaanmäki,P. (1984). Finite element approximation for a div-rot system with mixed boundary conditions in non-smooth plane domains. Aplikace matematiky, 29 (4), 272-285. Retrieved from https://eudml.org/doc/15357
Published in
Aplikace matematiky
Authors
Křížek, Michal |
Neittaanmäki, Pekka
Date
1984
Copyright
© Československá akademie věd. Matematický ústav, 1984.

 
The authors examine a finite element method for the numerical approximation of the solution to a div-rot system with mixed boundary conditions in bounded plane domains with piecewise smooth boundary. The solvability of the system both in an infinite and finite dimensional formulation is proved. Piecewise linear element fields with pointwise boundary conditions are used and their approximation properties are studied. Numerical examples indicating the accuracy of the method are given.
Publisher
Československá akademie věd. Matematický ústav.
ISSN Search the Publication Forum
0862-7940
Keywords
div-rot system

Original source
https://eudml.org/doc/15357

URI

http://urn.fi/URN:NBN:fi:jyu-201703241746

Metadata
Show full item record
Collections
  • Matemaattis-luonnontieteellinen tiedekunta [4424]

Related items

Showing items with similar title or keywords.

  • Solvability of a first order system in three-dimensional non-smooth domains 

    Křížek, Michal; Neittaanmäki, Pekka (Československá akademie věd. Matematický ústav., 1985)
  • L2-variation of Lévy driven BSDEs with non-smooth terminal conditions 

    Geiss, Christel; Steinicke, Alexander (International Statistical Institute; Bernoulli Society for Mathematical Statistics and Probability, 2016)
    We consider the L2-regularity of solutions to backward stochastic differential equations (BSDEs) with Lipschitz generators driven by a Brownian motion and a Poisson random measure associated with a Lévy process (Xt)t∈[0,T]. ...
  • Regularization and finite element approximation of the wave equation with Dirichlet boundary data 

    Lasiecka, I.; Sokołowski, J.; Neittaanmäki, Pekka (Polish Academy of Sciences, Institute of Mathematics, 1990)
    A numerical method for solving the wave equation with nonhomogenuous, nonsmooth Dirichlet boundary condition is proposed. Convergence of the method is proved and some erràr estimates are derived [L-S-2]. The method ...
  • On the convergence of the finite element approximation of eigenfrequencies and eigenvectors to Maxwell's boundary value problem 

    Neittaanmäki, Pekka; Picard, Rainer (Suomalainen tiedeakatemia, 1981)
  • Fixed domain approaches in shape optimization problems with Dirichlet boundary conditions 

    Neittaanmäki, Pekka; Pennanen, Anssi; Tiba, Dan (IOP Publishing, 2009)
    Fixed domain methods have well-known advantages in the solution of variable domain problems including inverse interface problems. This paper examines two new control approaches to optimal design problems governed by general ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre