Näytä suppeat kuvailutiedot

dc.contributor.authorÄrje, Johanna
dc.contributor.authorKärkkäinen, Salme
dc.contributor.authorMeissner, Kristian
dc.contributor.authorIosifidis, Alexandros
dc.contributor.authorInce, Türker
dc.contributor.authorGabbouj, Moncef
dc.contributor.authorKiranyaz, Serkan
dc.date.accessioned2017-01-12T12:27:42Z
dc.date.available2018-12-13T22:35:35Z
dc.date.issued2017
dc.identifier.citationÄrje, J., Kärkkäinen, S., Meissner, K., Iosifidis, A., Ince, T., Gabbouj, M., & Kiranyaz, S. (2017). The effect of automated taxa identification errors on biological indices. <i>Expert Systems with Applications</i>, <i>72</i>, 108-120. <a href="https://doi.org/10.1016/j.eswa.2016.12.015" target="_blank">https://doi.org/10.1016/j.eswa.2016.12.015</a>
dc.identifier.otherCONVID_26388382
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/52714
dc.description.abstractIn benthic macroinvertebrate biomonitoring systems, the target is to determine the status of ecosystems based on several biological indices. To increase cost-efficiency, computer-based taxa identification for image data has recently been developed. Taxa identification errors can, however, have strong effects on the indices and thus on the determination of the ecological status. In order to shift the biomonitoring process towards automated expert systems, we need a clear understanding on the bias caused by automation. In this paper, we examine eleven classification methods in the case of macroinvertebrate image data and show how their classification errors propagate into different biological indices. We evaluate 14 richness, diversity, dominance and similarity indices commonly used in biomonitoring. Besides the error rate of the classification method, we discuss the potential effect of different types of identification errors. Finally, we provide recommendations on indices that are least affected by the automatic identification errors and could be used in automated biomonitoring.
dc.language.isoeng
dc.publisherPergamon
dc.relation.ispartofseriesExpert Systems with Applications
dc.subject.otherbiomonitoring
dc.subject.otherclassification error
dc.subject.otherdiversity: error propagation
dc.subject.otheridentification
dc.titleThe effect of automated taxa identification errors on biological indices
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201701021008
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-01-02T07:15:22Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange108-120
dc.relation.issn0957-4174
dc.relation.numberinseries0
dc.relation.volume72
dc.type.versionacceptedVersion
dc.rights.copyright© 2016 Elsevier Ltd. This is a final draft version of an article whose final and definitive form has been published by Elsevier. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber289076
dc.subject.ysosamanlaisuus
jyx.subject.urihttp://www.yso.fi/onto/yso/p20941
dc.relation.doi10.1016/j.eswa.2016.12.015
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationWe thank the Academy of Finland (projects 288584 (Kiranyaz), 295854 (Iosidis), 289364 (Gabbouj), 289076 (Ärje, Kärkkäinen) and 289104 (Meissner)) and the Ellen and Artturi Nyyssönen foundation for the grant of Ärje. The authors would like to thank Marko Vikstedt for the preparation of the monitoring data and Tuomas Turpeinen for the image data. We kindly thank Antti Penttinen for fruitful discussions and support.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot