Human experts vs. machines in taxa recognition
Ärje, J., Raitoharju, J., Iosifidis, A., Tirronen, V., Meissner, K., Gabbouj, M., Kiranyaz, S., & Kärkkäinen, S. (2020). Human experts vs. machines in taxa recognition. Signal Processing : Image Communication, 87, Article 115917. https://doi.org/10.1016/j.image.2020.115917
Julkaistu sarjassa
Signal Processing : Image CommunicationTekijät
Päivämäärä
2020Tekijänoikeudet
© 2020 Elsevier B.V. All rights reserved.
The step of expert taxa recognition currently slows down the response time of many bioassessments. Shifting to quicker and cheaper state-of-the-art machine learning approaches is still met with expert scepticism towards the ability and logic of machines. In our study, we investigate both the differences in accuracy and in the identification logic of taxonomic experts and machines. We propose a systematic approach utilizing deep Convolutional Neural Nets and extensively evaluate it over a multi-pose taxonomic dataset with hierarchical labels specifically created for this comparison. We also study the prediction accuracy on different ranks of taxonomic hierarchy in detail. We compare the results of Convolutional Neural Networks to human experts and support vector machines. Our results revealed that human experts using actual specimens yield the lowest classification error (CE¯=6.1%). However, a much faster, automated approach using deep Convolutional Neural Nets comes close to human accuracy (CE¯=11.4%) when a typical flat classification approach is used. Contrary to previous findings in the literature, we find that for machines following a typical flat classification approach commonly used in machine learning performs better than forcing machines to adopt a hierarchical, local per parent node approach used by human taxonomic experts (CE¯=13.8%). Finally, we publicly share our unique dataset to serve as a public benchmark dataset in this field.
...
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0923-5965Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/35990112
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SA; Akatemiatutkijan tutkimuskulut, SALisätietoja rahoituksesta
We thank the Academy of Finland for the grants of Ärje (284513, 289076), Tirronen (289076, 289104) Kärkkäinen (289076), Meissner (289104), and Raitoharju (288584). We would like to thank CSC for computational resources.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Domain‐specific neural networks improve automated bird sound recognition already with small amount of local data
Lauha, Patrik; Somervuo, Panu; Lehikoinen, Petteri; Geres, Lisa; Richter, Tobias; Seibold, Sebastian; Ovaskainen, Otso (Wiley-Blackwell, 2022)An automatic bird sound recognition system is a useful tool for collecting data of different bird species for ecological analysis. Together with autonomous recording units (ARUs), such a system provides a possibility to ... -
Tree Species Identification Using 3D Spectral Data and 3D Convolutional Neural Network
Pölönen, Ilkka; Annala, Leevi; Rahkonen, Samuli; Nevalainen, Olli; Honkavaara, Eija; Tuominen, Sakari; Viljanen, Niko; Hakala, Teemu (IEEE, 2019)In this study we apply 3D convolutional neural network (CNN) for tree species identification. Study includes the three most common Finnish tree species. Study uses a relatively large high-resolution spectral data set, ... -
Taxonomy-Informed Neural Networks for Smart Manufacturing
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2024)A neural network (NN) is known to be an efficient and learnable tool supporting decision-making processes particularly in Industry 4.0. The majority of NNs are data-driven and, therefore, depend on training data quantity ... -
Causality-Aware Convolutional Neural Networks for Advanced Image Classification and Generation
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2023)Smart manufacturing uses emerging deep learning models, and particularly Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), for different industrial diagnostics tasks, e.g., classification, ... -
Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks
Nezami, Somayeh; Khoramshahi, Ehsan; Nevalainen, Olli; Pölönen, Ilkka; Honkavaara, Eija (MDPI AG, 2020)Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.