Low-Temperature Coherent Thermal Conduction in Thin Phononic Crystal Membranes
Puurtinen, T., & Maasilta, I. (2016). Low-Temperature Coherent Thermal Conduction in Thin Phononic Crystal Membranes. Crystals, 6(6), Article 72. https://doi.org/10.3390/cryst6060072
Published in
CrystalsDate
2016Copyright
© the Authors, 2016. This is an open access article distributed under the terms of a Creative Commons License.
In recent years, the idea of controlling phonon thermal transport coherently using
phononic crystals has been introduced. Here, we extend our previous numerical studies of ballistic
low-temperature heat transport in two-dimensional hole-array phononic crystals, and concentrate
on the effect of the lattice periodicity. We find that thermal conductance can be either enhanced or
reduced by large factors, depending on the the lattice period. Analysis shows that both the density of
states and the average group velocity are strongly affected by the periodic structuring. The largest
effect for the reduction seen for larger period structures comes from the strong reduction of the group
velocities, but a contribution also comes from the reduction of the density of states. For the short
period structures, the enhancement is due to the enhanced density of states.
Publisher
MDPIISSN Search the Publication Forum
2073-4352Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/26163712
Metadata
Show full item recordCollections
License
Except where otherwise noted, this item's license is described as © the Authors, 2016. This is an open access article distributed under the terms of a Creative Commons License.
Related items
Showing items with similar title or keywords.
-
Thermal conductance of pillar-based phononic crystals at sub-Kelvin temperatures
Korkiamäki, Tatu (2020)Fononikide on keinotekoinen periodinen rakenne yhdessä, kahdessa tai kolmessa ulottuvuudessa, joka vaikuttaa fononien eli elastisten aaltojen kvanttien etenemiseen. Koska lämmön johtuminen eristeissä ja puolijohteissa ... -
Minimizing Coherent Thermal Conductance by Controlling the Periodicity of Two-Dimensional Phononic Crystals
Tian, Yaolan; Puurtinen, Tuomas A.; Geng, Zhuoran; Maasilta, Ilari J. (American Physical Society, 2019)Periodic hole-array phononic crystals (PnCs) can strongly modify phonon dispersion relations and have been shown to influence thermal conductance coherently, especially at low temperatures where bulk scattering is suppressed. ... -
Low temperature heat capacity of phononic crystal membranes
Puurtinen, Tuomas; Maasilta, Ilari (American Institute of Physics, 2016)Phononic crystal (PnC) membranes are a promising solution to improve sensitivity of bolometric sensor devices operating at low temperatures. Previous work has concentrated only on tuning thermal conductance, but significant ... -
High-frequency filtering for low-temperature thermal transport studies in nanostructures
Torgovkin, Andrii (2012)Filtering of external unwanted RF-noise and thermal noise generated at the high-temperature parts of the measuring circuit is essential for successful measurements of thermal transport of nanostructures at low temperatures. ... -
Low-temperature thermal and plasma-enhanced atomic layer deposition of metal oxide thin films
Napari, Mari (University of Jyväskylä, 2017)Atomic layer deposition (ALD) is a method for thin film fabrication with atomic level precision. This thesis focuses on low-temperature thermal and plasma- enhanced ALD and presents results on thin film growth by these ...