Low temperature heat capacity of phononic crystal membranes
Puurtinen, T., & Maasilta, I. (2016). Low temperature heat capacity of phononic crystal membranes. AIP Advances, 6(12), Article 121902. https://doi.org/10.1063/1.4968619
Published in
AIP AdvancesDate
2016Copyright
© 2016 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
Phononic crystal (PnC) membranes are a promising solution to improve sensitivity
of bolometric sensor devices operating at low temperatures. Previous work has concentrated
only on tuning thermal conductance, but significant changes to the heat
capacity are also expected due to the modification of the phonon modes. Here, we
calculate the area-specific heat capacity for thin (37.5 - 300 nm) silicon and silicon
nitride PnC membranes with cylindrical hole patterns of varying period, in the temperature
range 1 - 350 mK. We compare the results to two- and three-dimensional
Debye models, as the 3D Debye model is known to give an accurate estimate for the
low-temperature heat capacity of a bulk sample. We found that thin PnC membranes
do not obey the 3D Debye T3 law, nor the 2D T2 law, but have a weaker, approximately
linear temperature dependence in the low temperature limit. We also found
that depending on the design, the PnC patterning can either enhance or reduce the
heat capacity compared to an unpatterned membrane of the same thickness. At temperatures
below 100 mK, reducing the membrane thickness unintuitively increases
the heat capacity for all samples studied. These observations can have significance
when designing calorimetric detectors, as heat capacity is a critical parameter for the
speed and sensitivity of a device.
...


Publisher
American Institute of PhysicsISSN Search the Publication Forum
2158-3226Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/26353900
Metadata
Show full item recordCollections
License
Except where otherwise noted, this item's license is described as © 2016 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
Related items
Showing items with similar title or keywords.
-
Low-Temperature Coherent Thermal Conduction in Thin Phononic Crystal Membranes
Puurtinen, Tuomas; Maasilta, Ilari (MDPI, 2016)In recent years, the idea of controlling phonon thermal transport coherently using phononic crystals has been introduced. Here, we extend our previous numerical studies of ballistic low-temperature heat transport in ... -
A software for simulating dispersive properties of multilayered phononic crystal membranes
Lappalainen, Panu (2021)Tässä tutkielmassa kehitetty uudenlainen Kalvo-ohjelmisto simuloi monikerroksisten sylinterireikähilaisten fononikidekalvojen dispersioita äärelliselementtimenetelmää (FEM) käyttäen. Havainnollistavan systemaattisen ... -
Thermal conductance of pillar-based phononic crystals at sub-Kelvin temperatures
Korkiamäki, Tatu (2020)Fononikide on keinotekoinen periodinen rakenne yhdessä, kahdessa tai kolmessa ulottuvuudessa, joka vaikuttaa fononien eli elastisten aaltojen kvanttien etenemiseen. Koska lämmön johtuminen eristeissä ja puolijohteissa ... -
Intregrating metallic wiring with three-dimensional polystyrene colloidal crystals using electron-beam lithography and three-dimensional laser lithography
Tian, Yaolan; Isotalo, Tero; Konttinen, Mikko P.; Li, Jiawei; Heiskanen, Samuli; Geng, Zhuoran; Maasilta, Ilari (IOP Publishing, 2017)We demonstrate a method to fabricate narrow, down to a few micron wide metallic leads on top of a three-dimensional colloidal crystal self-assembled from polystyrene (PS) nanospheres of diameter 260 nm, using electron-beam ... -
Periodic nanostructures for thermal engineering applications
Isotalo, Tero (University of Jyväskylä, 2014)