L2-variation of Lévy driven BSDEs with non-smooth terminal conditions
Geiss, C., & Steinicke, A. (2016). L2-variation of Lévy driven BSDEs with non-smooth terminal conditions. Bernoulli, 22(2), 995-1025. https://doi.org/10.3150/14-BEJ684
Published in
BernoulliDate
2016Copyright
© 2016 ISI/BS. Published in this repository with the kind permission of the publisher.
We consider the L2-regularity of solutions to backward stochastic differential equations (BSDEs) with Lipschitz generators driven by a Brownian motion and a Poisson random measure associated with a Lévy process (Xt)t∈[0,T]. The terminal condition may be a Borel function of finitely many increments of the Lévy process which is not necessarily Lipschitz but only satisfies a fractional smoothness condition. The results are obtained by investigating how the special structure appearing in the chaos expansion of the terminal condition is inherited by the solution to the BSDE.
Publisher
International Statistical Institute; Bernoulli Society for Mathematical Statistics and ProbabilityISSN Search the Publication Forum
1350-7265Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/25416595
Metadata
Show full item recordCollections
Related items
Showing items with similar title or keywords.
-
Markov chain backward stochastic differential equations in modeling insurance policy
Hänninen, Henri (2022)Tässä tutkielmassa tarkastelemme henkivakuutuksen varantoa. Mallinnamme henkivakuutusta Markovin prosessin avulla, ja varannon määrittelyyn ja mallintamiseen käytämme Markovin ketju BSDE:itä (Markovin ketju takaperoinen ... -
About mean-variance hedging with basis risk
Lähdemäki, Sami (2021)Tässä tutkielmassa perehdytään odotusarvo-varianssi -suojausongelmaan (engl. mean-variance hedging problem) epätäydellisillä sijoitusmarkkinoilla. Päälähteenä seuraamme X. Xuen, J. Zhanging ja C. Wengin artikkelia Mean-variance ... -
Random walk approximation of BSDEs with Hölder continuous terminal condition
Geiss, Christel; Labart, Céline; Luoto, Antti (International Statistical Institute, 2020)In this paper, we consider the random walk approximation of the solution of a Markovian BSDE whose terminal condition is a locally Hölder continuous function of the Brownian motion. We state the rate of the L2-convergence ... -
Malliavin smoothness on the Lévy space with Hölder continuous or BV functionals
Laukkarinen, Eija (2020)We consider Malliavin smoothness of random variables f(X1), where X is a purejump Lévy process and the functionfis either bounded and Hölder continuousor of bounded variation. We show that Malliavin differentiability and ... -
A note on Malliavin smoothness on the Lévy space
Laukkarinen, Eija (University of Washington, 2017)We consider Malliavin calculus based on the Itô chaos decomposition of square integrable random variables on the Lévy space. We show that when a random variable satisfies a certain measurability condition, its differentiability ...