Stability of degenerate parabolic Cauchy problems
Lukkari, T., & Parviainen, M. (2015). Stability of degenerate parabolic Cauchy problems. Communications on pure and applied analysis, 14(1), 201-216. https://doi.org/10.3934/cpaa.2015.14.201
Julkaistu sarjassa
Communications on pure and applied analysisPäivämäärä
2015Tekijänoikeudet
© 2014 American Institute of Mathematical Sciences. This is a final draft version of an article whose final and definitive form has been published by AIMS. Published in this repository with the kind permission of the publisher.
We prove that solutions to Cauchy problems related
to the p-parabolic equations are stable with respect to the nonlinearity
exponent p. More specifically, solutions with a fixed initial
trace converge in an L
q
-space to a solution of the limit problem as
p > 2 varies.
Julkaisija
American Institute of Mathematical SciencesISSN Hae Julkaisufoorumista
1534-0392Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/23888739
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Increasing stability in the linearized inverse Schrödinger potential problem with power type nonlinearities
Lu, Shuai; Salo, Mikko; Xu, Boxi (IOP Publishing, 2022)We consider increasing stability in the inverse Schrödinger potential problem with power type nonlinearities at a large wavenumber. Two linearization approaches, with respect to small boundary data and small potential ... -
Asymptotic mean value formulas for parabolic nonlinear equations
Blanc, Pablo; Charro, Fernando; Manfredi, Juan J.; Rossi, Julio D. (Union Matematica Argentina, 2022)In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge–Ampère equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from ... -
Intrinsic Harnack’s Inequality for a General Nonlinear Parabolic Equation in Non-divergence Form
Kurkinen, Tapio; Siltakoski, Jarkko (Springer, 2024)We prove the intrinsic Harnack’s inequality for a general form of a parabolic equation that generalizes both the standard parabolic p-Laplace equation and the normalized version arising from stochastic game theory. We prove ... -
A linear approach for the nonlinear distributed parameter identification problem
Tai, Xue-Cheng; Neittaanmäki, Pekka (Birkhäuser, 1991)In identifying the nonlinear distributed parameters we propose an approach, which enables us to identify the nonlinear distributed parameters by just solving linear problems. In this approach we just need to identify linear ... -
A parallel FE-splitting up method to parabolic problems
Tai, Xue-Cheng; Neittaanmäki, Pekka (University of Jyväskylä, 1989)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.