Intrinsic Harnack’s Inequality for a General Nonlinear Parabolic Equation in Non-divergence Form
Kurkinen, T., & Siltakoski, J. (2024). Intrinsic Harnack’s Inequality for a General Nonlinear Parabolic Equation in Non-divergence Form. Potential Analysis, Early online. https://doi.org/10.1007/s11118-024-10141-9
Julkaistu sarjassa
Potential AnalysisPäivämäärä
2024Tekijänoikeudet
© The Author(s) 2024
2025:5
We prove the intrinsic Harnack’s inequality for a general form of a parabolic equation that generalizes both the standard parabolic p-Laplace equation and the normalized version arising from stochastic game theory. We prove each result for the optimal range of exponents and ensure that we get stable constants.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0926-2601Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/213414648
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Open Access funding provided by University of Jyväskylä (JYU). Jarkko Siltakoski was supported by the Magnus Ehrnrooth Foundation.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Harnack’s inequalities and boundary regularity for a general nonlinear parabolic equation in non-divergence form
Kurkinen, Tapio (Jyväskylän yliopisto, 2024)Tässä väitöskirjassa tutkitaan epälineaarista parabolista yhtälöä, jonka erikoistapauksina saadaan <i>p</i>-parabolinen yhtälö ja normalisoitu <i>p</i>-parabolinen yhtälö. Yhtälö poikkeustapauksia lukuunottamatta ei ole ... -
Asymptotic mean value formulas for parabolic nonlinear equations
Blanc, Pablo; Charro, Fernando; Manfredi, Juan J.; Rossi, Julio D. (Union Matematica Argentina, 2022)In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge–Ampère equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from ... -
A systematic approach on the second order regularity of solutions to the general parabolic p-Laplace equation
Feng, Yawen; Parviainen, Mikko; Sarsa, Saara (Springer, 2023)We study a general form of a degenerate or singular parabolic equation ut−|Du|γ(Δu+(p−2)ΔN∞u)=0 that generalizes both the standard parabolic p-Laplace equation and the normalized version that arises from stochastic game ... -
Second order Sobolev regularity results for the generalized p-parabolic equation
Feng, Yawen; Parviainen, Mikko; Sarsa, Saara (Elsevier, 2025)We study a general class of parabolic equations ut−|Du|γ(Δu+(p−2)ΔN∞u)=0, which can be highly degenerate or singular. This class contains as special cases the standard parabolic p-Laplace equation and the normalized ... -
Elliptic Harnack's inequality for a singular nonlinear parabolic equation in non‐divergence form
Kurkinen, Tapio; Parviainen, Mikko; Siltakoski, Jarkko (Wiley-Blackwell, 2023)We prove an elliptic Harnack's inequality for a general form of a parabolic equation that generalizes both the standard parabolic -Laplace equation and the normalized version that has been proposed in stochastic game theory. ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.