Asymptotic mean value formulas for parabolic nonlinear equations
Blanc, P., Charro, F., Manfredi, J. J., & Rossi, J. D. (2022). Asymptotic mean value formulas for parabolic nonlinear equations. Revista de la Unión Matemática Argentina, 64(1), 137-164. https://doi.org/10.33044/revuma.3169
Julkaistu sarjassa
Revista de la Unión Matemática ArgentinaPäivämäärä
2022Tekijänoikeudet
© Authors, 2022
In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge–Ampère equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from a probabilistic point of view in terms of dynamic programming principles for certain two-player, zero-sum games.
Julkaisija
Union Matematica ArgentinaISSN Hae Julkaisufoorumista
0041-6932Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/159232581
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
P.B. partially supported by the Academy of Finland project no. 298641. F.C. partially supported by MICINN grants MTM2017-84214-C2-1-P and PID2019-110712GB-I100 (Spain). J.D.R. partially supported by CONICET grant PIP GI no. 11220150100036CO (Argentina), PICT-2018-03183 (Argentina) and UBACyT grant 20020160100155BA (Argentina).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Convergence of dynamic programming principles for the p-Laplacian
del Teso, Félix; Manfredi, Juan J.; Parviainen, Mikko (De Gruyter, 2022)We provide a unified strategy to show that solutions of dynamic programming principles associated to the p-Laplacian converge to the solution of the corresponding Dirichlet problem. Our approach includes all previously ... -
Asymptotic mean-value formulas for solutions of general second-order elliptic equations
Blanc, Pablo; Charro, Fernando; Manfredi, Juan J.; Rossi, Julio D. (Walter de Gruyter GmbH, 2022)We obtain asymptotic mean-value formulas for solutions of second-order elliptic equations. Our approach is very flexible and allows us to consider several families of operators obtained as an infimum, a supremum, or a ... -
Equivalence of viscosity and weak solutions for a p-parabolic equation
Siltakoski, Jarkko (Springer, 2021)We study the relationship of viscosity and weak solutions to the equation partial derivative(t)u - Delta(p)u = f (Du), where p > 1 and f is an element of C(R-N) satisfies suitable assumptions. Our main result is that bounded ... -
A systematic approach on the second order regularity of solutions to the general parabolic p-Laplace equation
Feng, Yawen; Parviainen, Mikko; Sarsa, Saara (Springer, 2023)We study a general form of a degenerate or singular parabolic equation ut−|Du|γ(Δu+(p−2)ΔN∞u)=0 that generalizes both the standard parabolic p-Laplace equation and the normalized version that arises from stochastic game ... -
Game-Theoretic Approach to Hölder Regularity for PDEs Involving Eigenvalues of the Hessian
Blanc, Pablo; Han, Jeongmin; Parviainen, Mikko; Ruosteenoja, Eero (Springer, 2022)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.