Show simple item record

dc.contributor.authorGigli, Nicola
dc.contributor.authorMondino, Andrea
dc.contributor.authorRajala, Tapio
dc.date.accessioned2015-08-18T05:57:05Z
dc.date.available2015-08-18T05:57:05Z
dc.date.issued2015
dc.identifier.citationGigli, N., Mondino, A., & Rajala, T. (2015). Euclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded below. <i>Journal für die reine und angewandte Mathematik</i>, <i>2015</i>(705), 233–244. <a href="https://doi.org/10.1515/crelle-2013-0052" target="_blank">https://doi.org/10.1515/crelle-2013-0052</a>
dc.identifier.otherCONVID_24809182
dc.identifier.otherTUTKAID_66696
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/46640
dc.description.abstractWe show that in any infinitesimally Hilbertian CD .K; N /-space at almost every point there exists a Euclidean weak tangent, i.e., there exists a sequence of dilations of the space that converges to a Euclidean space in the pointed measured Gromov–Hausdorff topology. The proof follows by considering iterated tangents and the splitting theorem for infinitesimally Hilbertian CD.0; N /-spaces.
dc.language.isoeng
dc.publisherWalterde Gruyter GmbH & Co. KG
dc.relation.ispartofseriesJournal für die reine und angewandte Mathematik
dc.subject.otherEuclidean spaces
dc.subject.otherweak tangents
dc.subject.otherHilbertian spaces
dc.titleEuclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded below
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201508172682
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2015-08-17T12:15:03Z
dc.type.coarjournal article
dc.description.reviewstatuspeerReviewed
dc.format.pagerange233–244
dc.relation.issn0075-4102
dc.relation.numberinseries705
dc.relation.volume2015
dc.type.versionpublishedVersion
dc.rights.copyright© De Gruyter 2015. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.doi10.1515/crelle-2013-0052


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record