Infinitesimal Hilbertianity of Locally CAT(κ)-Spaces
Di Marino, S., Gigli, N., Pasqualetto, E., & Soultanis, E. (2021). Infinitesimal Hilbertianity of Locally CAT(κ)-Spaces. Journal of Geometric Analysis, 31(8), 7621-7685. https://doi.org/10.1007/s12220-020-00543-7
Julkaistu sarjassa
Journal of Geometric AnalysisPäivämäärä
2021Tekijänoikeudet
© The Author(s) 2020
We show that, given a metric space (Y,d)(Y,d) of curvature bounded from above in the sense of Alexandrov, and a positive Radon measure μμ on YY giving finite mass to bounded sets, the resulting metric measure space (Y,d,μ)(Y,d,μ) is infinitesimally Hilbertian, i.e. the Sobolev space W1,2(Y,d,μ)W1,2(Y,d,μ) is a Hilbert space. The result is obtained by constructing an isometric embedding of the ‘abstract and analytical’ space of derivations into the ‘concrete and geometrical’ bundle whose fibre at x∈Yx∈Y is the tangent cone at x of YY. The conclusion then follows from the fact that for every x∈Yx∈Y such a cone is a CAT(0)CAT(0) space and, as such, has a Hilbert-like structure.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
1050-6926Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/43536864
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This research has been supported by the MIUR SIR-Grant ‘Nonsmooth Differential Geometry’ (RBSI147UG4). Open access funding provided by Scuola Internazionale Superiore di Studi Avanzati – SISSA within the CRUI-CARE Agreement.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Uniformization with Infinitesimally Metric Measures
Rajala, Kai; Rasimus, Martti; Romney, Matthew (Springer, 2021)We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, ... -
Differential of metric valued Sobolev maps
Gigli, Nicola; Pasqualetto, Enrico; Soultanis, Elefterios (Elsevier, 2020)We introduce a notion of differential of a Sobolev map between metric spaces. The differential is given in the framework of tangent and cotangent modules of metric measure spaces, developed by the first author. We prove ... -
Tensorization of p-weak differentiable structures
Eriksson-Bique, Sylvester; Rajala, Tapio; Soultanis, Elefterios (Elsevier, 2024)We consider p-weak differentiable structures that were recently introduced in [9], and prove that the product of p-weak charts is a p-weak chart. This implies that the product of two spaces with a p-weak differentiable ... -
A new Cartan-type property and strict quasicoverings when P = 1 in metric spaces
Lahti, Panu (Suomalainen tiedeakatemia, 2018)In a complete metric space that is equipped with a doubling measure and supports a Poincaré inequality, we prove a new Cartan-type property for the fine topology in the case p = 1. Then we use this property to prove the ... -
Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds
Le Donne, Enrico; Lučić, Danka; Pasqualetto, Enrico (Springer, 2023)We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.