Euclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded below
Gigli, N., Mondino, A., & Rajala, T. (2015). Euclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded below. Journal für die reine und angewandte Mathematik, 2015(705), 233-244. https://doi.org/10.1515/crelle-2013-0052
Julkaistu sarjassa
Journal für die reine und angewandte MathematikPäivämäärä
2015Tekijänoikeudet
© De Gruyter 2015. Published in this repository with the kind permission of the publisher.
We show that in any infinitesimally Hilbertian CD
.K; N /-space at almost
every point there exists a Euclidean weak tangent, i.e., there exists a sequence of dilations
of the space that converges to a Euclidean space in the pointed measured Gromov–Hausdorff
topology. The proof follows by considering iterated tangents and the splitting theorem for
infinitesimally Hilbertian CD.0; N /-spaces.
Julkaisija
Walterde Gruyter GmbH & Co. KGISSN Hae Julkaisufoorumista
0075-4102Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/24809182
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space
Di Marino, Simone; Lučić, Danka; Pasqualetto, Enrico (Institut de France, 2020)We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon ... -
Infinitesimal Hilbertianity of Locally CAT(κ)-Spaces
Di Marino, Simone; Gigli, Nicola; Pasqualetto, Enrico; Soultanis, Elefterios (Springer, 2021)We show that, given a metric space (Y,d)(Y,d) of curvature bounded from above in the sense of Alexandrov, and a positive Radon measure μμ on YY giving finite mass to bounded sets, the resulting metric measure space ... -
Uniformization with Infinitesimally Metric Measures
Rajala, Kai; Rasimus, Martti; Romney, Matthew (Springer, 2021)We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, ... -
On one-dimensionality of metric measure spaces
Schultz, Timo (American Mathematical Society (AMS), 2021)In this paper, we prove that a metric measure space which has at least one open set isometric to an interval, and for which the (possibly non-unique) optimal transport map exists from any absolutely continuous measure to ... -
Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds
Le Donne, Enrico; Lučić, Danka; Pasqualetto, Enrico (Springer, 2023)We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.