Infinitesimal Hilbertianity of Weighted Riemannian Manifolds
Lučić, D., & Pasqualetto, E. (2020). Infinitesimal Hilbertianity of Weighted Riemannian Manifolds. Canadian Mathematical Bulletin, 63(1), 118-140. https://doi.org/10.4153/S0008439519000328
Julkaistu sarjassa
Canadian Mathematical BulletinPäivämäärä
2020Tekijänoikeudet
© Canadian Mathematical Society 2019
The main result of this paper is the following: any weighted Riemannian manifold (M,g,𝜇), i.e., a Riemannian manifold
(M,g) endowed with a generic non-negative Radon measure 𝜇, is infinitesimally Hilbertian, which means that its associated Sobolev space W1,2(M,g,𝜇) is a Hilbert space.
We actually prove a stronger result: the abstract tangent module (à la Gigli) associated with any weighted reversible Finsler manifold (M,F,𝜇) can be isometrically embedded into the space of all measurable sections of the tangent bundle of M that are 2-integrable with respect to 𝜇.
By following the same approach, we also prove that all weighted (sub-Riemannian) Carnot groups are infinitesimally Hilbertian.
Julkaisija
Canadian Mathematical SocietyISSN Hae Julkaisufoorumista
0008-4395Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/34731335
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds
Le Donne, Enrico; Lučić, Danka; Pasqualetto, Enrico (Springer, 2023)We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations ... -
A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space
Di Marino, Simone; Lučić, Danka; Pasqualetto, Enrico (Institut de France, 2020)We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon ... -
Conformality and Q-harmonicity in sub-Riemannian manifolds
Capogna, Luca; Citti, Giovanna; Le Donne, Enrico; Ottazzi, Alessandro (Elsevier Masson, 2019)We establish regularity of conformal maps between sub-Riemannian manifolds from regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth in all contact ... -
Limiting Carleman weights and conformally transversally anisotropic manifolds
Angulo, Pablo; Faraco, Daniel; Guijarro, Luis; Salo, Mikko (American Mathematical Society, 2020)We analyze the structure of the set of limiting Carleman weights in all conformally flat manifolds, $ 3$-manifolds, and $ 4$-manifolds. In particular we give a new proof of the classification of Euclidean limiting Carleman ... -
Translating Solitons Over Cartan–Hadamard Manifolds
Casteras, Jean-Baptiste; Heinonen, Esko; Holopainen, Ilkka; De Lira, Jorge H. (Springer Science and Business Media LLC, 2023)We prove existence results for entire graphical translators of the mean curvature flow (the so-called bowl solitons) on Cartan–Hadamard manifolds. We show that the asymptotic behavior of entire solitons depends heavily on ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.