dc.contributor.author | Akkanen, Suvi‐Tuuli M. | |
dc.contributor.author | Arias‐Muñoz, Juan C. | |
dc.contributor.author | Emelianov, Aleksei V. | |
dc.contributor.author | Mentel, Kamila K. | |
dc.contributor.author | Tammela, Juhani V. | |
dc.contributor.author | Partanen, Mikko | |
dc.contributor.author | Das, Susobhan | |
dc.contributor.author | Faisal, Ahmed | |
dc.contributor.author | Pettersson, Mika | |
dc.contributor.author | Sun, Zhipei | |
dc.date.accessioned | 2024-11-01T12:04:08Z | |
dc.date.available | 2024-11-01T12:04:08Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Akkanen, S. M., Arias‐Muñoz, J. C., Emelianov, A. V., Mentel, K. K., Tammela, J. V., Partanen, M., Das, S., Faisal, A., Pettersson, M., & Sun, Z. (2024). Enhanced Nonlinear Optical Responses in MoS2 via Femtosecond Laser‐Induced Defect‐Engineering. <i>Advanced Functional Materials</i>, <i>Early online</i>, Article 2406942. <a href="https://doi.org/10.1002/adfm.202406942" target="_blank">https://doi.org/10.1002/adfm.202406942</a> | |
dc.identifier.other | CONVID_243482434 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/98029 | |
dc.description.abstract | 2D materials are a promising platform for applications in many fields as they possess a plethora of useful properties that can be further optimized by careful engineering, for example, by defect introduction. While reliable high-yield defect engineering methods are in demand, most current technologies are expensive, harsh, or non-deterministic. Optical modification methods offer a cost-effective and fast mechanism to engineer the properties of 2D materials at any step of the device fabrication process. In this paper, the nonlinear optical responses of mono-, bi-, and trilayer molybdenum disulfide (MoS2) flakes are enhanced by deterministic defect-engineering with a femtosecond laser. A 50-fold enhancement in the third harmonic generation (THG) and a 3.3-fold increase in the second harmonic generation (SHG) in the optically modified areas is observed. The enhancement is attributed to resonant SHG and THG processes arising from optically introduced mid-band gap defect states. These results demonstrate a highly controllable, sub-micrometer resolution tool for enhancing the nonlinear optical responses in 2D materials, paving the way for prospective future applications in optoelectronics, quantum technologies, and energy solutions. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Wiley | |
dc.relation.ispartofseries | Advanced Functional Materials | |
dc.rights | CC BY 4.0 | |
dc.subject.other | defect engineering | |
dc.subject.other | femtosecond laser | |
dc.subject.other | nonlinear optics | |
dc.subject.other | optical modification | |
dc.subject.other | second harmonic generation | |
dc.subject.other | transition metal dichalcogenides | |
dc.title | Enhanced Nonlinear Optical Responses in MoS2 via Femtosecond Laser‐Induced Defect‐Engineering | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202411016877 | |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Chemistry | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1616-301X | |
dc.relation.volume | Early online | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 The Author(s). Advanced Functional Materials published by Wiley-VCH GmbH | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | materiaalitutkimus | |
dc.subject.yso | lasertekniikka | |
dc.subject.yso | nanomateriaalit | |
dc.subject.yso | fotoniikka | |
dc.subject.yso | nanotekniikka | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21322 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p20011 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p22976 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38037 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11463 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1002/adfm.202406942 | |
jyx.fundinginformation | The authors acknowledge the provision of facilities and technical support by Aalto University at OtaNano - Nanomicroscopy Center (Aalto-NMC). The authors acknowledge funding from the Research Council of Finland (314810, 333982, 336144, 349971, 352780, 352930, and 353364), the Research Council of Finland Flagship Programme (320167, PREIN), the EU H2020-MSCA-RISE-872049 (IPN-Bio), the Jane and Aatos Erkko foundation and the Technology Industries of Finland centennial foundation (Future Makers 2022), and ERC (834742; 101082183). | |
dc.type.okm | A1 | |