Näytä suppeat kuvailutiedot

dc.contributor.authorPrezja, Fabi
dc.contributor.authorAnnala, Leevi
dc.contributor.authorKiiskinen, Sampsa
dc.contributor.authorLahtinen, Suvi
dc.contributor.authorOjala, Timo
dc.contributor.authorRuusuvuori, Pekka
dc.contributor.authorKuopio, Teijo
dc.date.accessioned2024-10-24T09:53:05Z
dc.date.available2024-10-24T09:53:05Z
dc.date.issued2024
dc.identifier.citationPrezja, F., Annala, L., Kiiskinen, S., Lahtinen, S., Ojala, T., Ruusuvuori, P., & Kuopio, T. (2024). Improving Performance in Colorectal Cancer Histology Decomposition using Deep and Ensemble Machine Learning. <i>Heliyon</i>, <i>10</i>(18), Article e37561. <a href="https://doi.org/10.1016/j.heliyon.2024.e37561" target="_blank">https://doi.org/10.1016/j.heliyon.2024.e37561</a>
dc.identifier.otherCONVID_242655125
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/97672
dc.description.abstractIn routine colorectal cancer management, histologic samples stained with hematoxylin and eosin are commonly used. Nonetheless, their potential for defining objective biomarkers for patient stratification and treatment selection is still being explored. The current gold standard relies on expensive and time-consuming genetic tests. However, recent research highlights the potential of convolutional neural networks (CNNs) to facilitate the extraction of clinically relevant biomarkers from these readily available images. These CNN-based biomarkers can predict patient outcomes comparably to golden standards, with the added advantages of speed, automation, and minimal cost. The predictive potential of CNN-based biomarkers fundamentally relies on the ability of CNNs to accurately classify diverse tissue types from whole slide microscope images. Consequently, enhancing the accuracy of tissue class decomposition is critical to amplifying the prognostic potential of imaging-based biomarkers. This study introduces a hybrid deep transfer learning and ensemble machine learning model that improves upon previous approaches, including a transformer and neural architecture search baseline for this task.We employed a pairing of the EfficientNetV2 architecture with a random forest classification head. Our model achieved 96.74% accuracy (95% CI: 96.3%-97.1%) on the external test set and 99.89% on the internal test set. Recognizing the potential of these models in the task, we have made them publicly available.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesHeliyon
dc.rightsCC BY 4.0
dc.subject.otherdeep learning
dc.subject.otherCRC
dc.subject.otherhistopathology
dc.subject.otherbiomarkers
dc.subject.otherhybrid model
dc.titleImproving Performance in Colorectal Cancer Histology Decomposition using Deep and Ensemble Machine Learning
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202410246528
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2405-8440
dc.relation.numberinseries18
dc.relation.volume10
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Author(s). Published by Elsevier Ltd
dc.rights.accesslevelopenAccessfi
dc.subject.ysosyöpätaudit
dc.subject.ysobiomarkkerit
dc.subject.ysohistologia
dc.subject.ysosuolistosyövät
dc.subject.ysokoneoppiminen
dc.subject.ysosyväoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p678
jyx.subject.urihttp://www.yso.fi/onto/yso/p12288
jyx.subject.urihttp://www.yso.fi/onto/yso/p20287
jyx.subject.urihttp://www.yso.fi/onto/yso/p25845
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.datasethttps://drive.google.com/drive/folders/1ypFyU2V6ifRkLB6hRKlqb6C2D_fvL_5Y?usp=sharing
dc.relation.doi10.1016/j.heliyon.2024.e37561
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0