Domain-specific transfer learning in the automated scoring of tumor-stroma ratio from histopathological images of colorectal cancer
Petäinen, L., Väyrynen, J. P., Ruusuvuori, P., Pölönen, I., Äyrämö, S., & Kuopio, T. (2023). Domain-specific transfer learning in the automated scoring of tumor-stroma ratio from histopathological images of colorectal cancer. PLoS ONE, 18(5), Article e0286270. https://doi.org/10.1371/journal.pone.0286270
Julkaistu sarjassa
PLoS ONETekijät
Päivämäärä
2023Oppiaine
Computing, Information Technology and MathematicsTietotekniikkaHuman and Machine based Intelligence in LearningSolu- ja molekyylibiologiaLaskennallinen tiedeHyvinvoinnin tutkimuksen yhteisöComputing, Information Technology and MathematicsMathematical Information TechnologyHuman and Machine based Intelligence in LearningCell and Molecular BiologyComputational ScienceSchool of WellbeingTekijänoikeudet
© 2023 Petäinen et al.
Tumor-stroma ratio (TSR) is a prognostic factor for many types of solid tumors. In this study, we propose a method for automated estimation of TSR from histopathological images of colorectal cancer. The method is based on convolutional neural networks which were trained to classify colorectal cancer tissue in hematoxylin-eosin stained samples into three classes: stroma, tumor and other. The models were trained using a data set that consists of 1343 whole slide images. Three different training setups were applied with a transfer learning approach using domain-specific data i.e. an external colorectal cancer histopathological data set. The three most accurate models were chosen as a classifier, TSR values were predicted and the results were compared to a visual TSR estimation made by a pathologist. The results suggest that classification accuracy does not improve when domain-specific data are used in the pre-training of the convolutional neural network models in the task at hand. Classification accuracy for stroma, tumor and other reached 96.1% on an independent test set. Among the three classes the best model gained the highest accuracy (99.3%) for class tumor. When TSR was predicted with the best model, the correlation between the predicted values and values estimated by an experienced pathologist was 0.57. Further research is needed to study associations between computationally predicted TSR values and other clinicopathological factors of colorectal cancer and the overall survival of the patients.
...
Julkaisija
Public Library of Science (PLoS)ISSN Hae Julkaisufoorumista
1932-6203Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/183341874
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Pirkanmaan liittoRahoitusohjelmat(t)
EAKR Euroopan aluekehitysrahasto, React-EULisätietoja rahoituksesta
This study is one part of AI Hub Central Finland project that has received funding from the Council of Tampere Region (https://www. pirkanmaa.fi/en/) (Decision number: A75000) and Leverage from the EU 2014–2020, funded by European Regional Development Fund (ERDF) (https://ec.europa.eu/regional_policy/funding/erdf_ en).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
Petäinen, Liisa (2022)Tässä Pro gradu-työssä tutkitaan konvoluutioneuroverkkojen käyttömahdollisuuksia histopatologisista kuvista tehtävässä kasvain-strooma suhdeluvun arvioinnissa. Tarkoituksena on selvittää, mikä on siirto-opettamisen vaikutus, ... -
Domain‐specific neural networks improve automated bird sound recognition already with small amount of local data
Lauha, Patrik; Somervuo, Panu; Lehikoinen, Petteri; Geres, Lisa; Richter, Tobias; Seibold, Sebastian; Ovaskainen, Otso (Wiley-Blackwell, 2022)An automatic bird sound recognition system is a useful tool for collecting data of different bird species for ecological analysis. Together with autonomous recording units (ARUs), such a system provides a possibility to ... -
Improving Performance in Colorectal Cancer Histology Decomposition using Deep and Ensemble Machine Learning
Prezja, Fabi; Annala, Leevi; Kiiskinen, Sampsa; Lahtinen, Suvi; Ojala, Timo; Ruusuvuori, Pekka; Kuopio, Teijo (Elsevier, 2024)In routine colorectal cancer management, histologic samples stained with hematoxylin and eosin are commonly used. Nonetheless, their potential for defining objective biomarkers for patient stratification and treatment ... -
Differentiating Malignant from Benign Pigmented or Non-Pigmented Skin Tumours : A Pilot Study on 3D Hyperspectral Imaging of Complex Skin Surfaces and Convolutional Neural Networks
Lindholm, Vivian; Raita-Hakola, Anna-Maria; Annala, Leevi; Salmivuori, Mari; Jeskanen, Leila; Saari, Heikki; Koskenmies, Sari; Pitkänen, Sari; Pölönen, Ilkka; Isoherranen, Kirsi; Ranki, Annamari (MDPI AG, 2022)Several optical imaging techniques have been developed to ease the burden of skin cancer disease on our health care system. Hyperspectral images can be used to identify biological tissues by their diffuse reflected spectra. ... -
Differentiating Malignant from Benign for Melanocytic and Non-melanocytic Skin Tumors : A Pilot Study on Hyperspectral Imaging and Convolutional Neural Networks
Lindholm, Vivian; Raita-Hakola, Anna-Maria; Annala, Leevi; Salmivuori, Mari; Jeskanen, Leila; Koskenmies, Sari; Pitkänen, Sari; Saari, Heikki; Pölönen, Ilkka; Isoherranen, Kirsi; Ranki, Annamari (Society for Publication of Acta Dermato-Venereologica, 2022)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.