dc.contributor.author | Pichelstorfer, Lukas | |
dc.contributor.author | Roldin, Pontus | |
dc.contributor.author | Rissanen, Matti | |
dc.contributor.author | Hyttinen, Noora | |
dc.contributor.author | Garmash, Olga | |
dc.contributor.author | Xavier, Carlton | |
dc.contributor.author | Zhou, Putian | |
dc.contributor.author | Clusius, Petri | |
dc.contributor.author | Foreback, Benjamin | |
dc.contributor.author | Golin, Almeida Thomas | |
dc.contributor.author | Deng, Chenjuan | |
dc.contributor.author | Baykara, Metin | |
dc.contributor.author | Kurten, Theo | |
dc.contributor.author | Boy, Michael | |
dc.date.accessioned | 2024-08-15T13:12:35Z | |
dc.date.available | 2024-08-15T13:12:35Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Pichelstorfer, L., Roldin, P., Rissanen, M., Hyttinen, N., Garmash, O., Xavier, C., Zhou, P., Clusius, P., Foreback, B., Golin, A. T., Deng, C., Baykara, M., Kurten, T., & Boy, M. (2024). Towards automated inclusion of autoxidation chemistry in models : from precursors to atmospheric implications. <i>Environmental Science : Atmospheres</i>, <i>4</i>(8), 879-896. <a href="https://doi.org/10.1039/d4ea00054d" target="_blank">https://doi.org/10.1039/d4ea00054d</a> | |
dc.identifier.other | CONVID_233317315 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/96637 | |
dc.description.abstract | In the last few decades, atmospheric formation of secondary organic aerosols (SOA) has gained increasing attention due to their impact on air quality and climate. However, methods to predict their abundance are mainly empirical and may fail under real atmospheric conditions. In this work, a close-to-mechanistic approach allowing SOA quantification is presented, with a focus on a chain-like chemical reaction called "autoxidation". A novel framework is employed to (a) describe the gas-phase chemistry, (b) predict the products' molecular structures and (c) explore the contribution of autoxidation chemistry on SOA formation under various conditions. As a proof of concept, the method is applied to benzene, an important anthropogenic SOA precursor. Our results suggest autoxidation to explain up to 100% of the benzene-SOA formed under low-NOx laboratory conditions. Under atmospheric-like day-time conditions, the calculated benzene-aerosol mass continuously forms, as expected based on prior work. Additionally, a prompt increase, driven by the NO3 radical, is predicted by the model at dawn. This increase has not yet been explored experimentally and stresses the potential for atmospheric SOA formation via secondary oxidation of benzene by O3 and NO3. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Royal Society of Chemistry | |
dc.relation.ispartofseries | Environmental Science : Atmospheres | |
dc.rights | CC BY 4.0 | |
dc.title | Towards automated inclusion of autoxidation chemistry in models : from precursors to atmospheric implications | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202408155521 | |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Chemistry | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 879-896 | |
dc.relation.issn | 2634-3606 | |
dc.relation.numberinseries | 8 | |
dc.relation.volume | 4 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | ilmakemia | |
dc.subject.yso | bentseeni | |
dc.subject.yso | mallintaminen | |
dc.subject.yso | molekyylit | |
dc.subject.yso | ilmanlaatu | |
dc.subject.yso | ilmakehätieteet | |
dc.subject.yso | ilmasto | |
dc.subject.yso | aerosolit | |
dc.subject.yso | ilmakehä | |
dc.subject.yso | aerosolifysiikka | |
dc.subject.yso | hapettuminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26207 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18851 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3533 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2984 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5028 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26208 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5639 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p9802 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5393 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15192 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p9119 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.dataset | https://doi.org/10.5281/zenodo.8087267 | |
dc.relation.doi | 10.1039/d4ea00054d | |
jyx.fundinginformation | Austrian Science Funds (FWF), grant no. J-4241 Schrödinger Programme. Swedish Research Councils FORMAS and VR (FORMAS project no. 2018-01745; VR project no. 2019-05006). Crafoord foundation (project no. 20210969). Research Council of Finland, grant no. 338171, 331207 and 336531. Research Council of Finland (Center of Excellence, grant number 346369). Research Council of Finland (ACCC Flagship, 337549). Jane and Aatos Erkko Foundation (JAES). EU H2020 project FORCeS (821205). European Commission Horizon Europe project FOCI (101056783). This project has received funding from the European Research Council under the European Union's Horizon 2020 Research and Innovation Programme under grant no. 101002728. University of Helsinki and Stockholm University (Autumn 2020 Arctic Avenue). Computational resources were provided by the CSC-IT Center for Science, Finland. We would like to thank the Environmental Department City of Malmö for kindly providing benzene observations from the Dalaplan station in Malmö. | |
dc.type.okm | A1 | |