Natural Marine Precursors Boost Continental New Particle Formation and Production of Cloud Condensation Nuclei
de Jonge, R. W., Xavier, C., Olenius, T., Elm, J., Svenhag, C., Hyttinen, N., Nieradzik, L., Sarnela, N., Kristensson, A., Petäjä, T., Ehn, M., & Roldin, P. (2024). Natural Marine Precursors Boost Continental New Particle Formation and Production of Cloud Condensation Nuclei. Environmental Science and Technology, Early online. https://doi.org/10.1021/acs.est.4c01891
Julkaistu sarjassa
Environmental Science and TechnologyTekijät
Päivämäärä
2024Tekijänoikeudet
© 2024 the Authors
Marine dimethyl sulfide (DMS) emissions are the dominant source of natural sulfur in the atmosphere. DMS oxidizes to produce low-volatility acids that potentially nucleate to form particles that may grow into climatically important cloud condensation nuclei (CCN). In this work, we utilize the chemistry transport model ADCHEM to demonstrate that DMS emissions are likely to contribute to the majority of CCN during the biological active period (May-August) at three different forest stations in the Nordic countries. DMS increases CCN concentrations by forming nucleation and Aitken mode particles over the ocean and land, which eventually grow into the accumulation mode by condensation of low-volatility organic compounds from continental vegetation. Our findings provide a new understanding of the exchange of marine precursors between the ocean and land, highlighting their influence as one of the dominant sources of CCN particles over the boreal forest.
Julkaisija
American Chemical SocietyISSN Hae Julkaisufoorumista
0013-936XAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/220715021
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Tutkijatohtori, SALisätietoja rahoituksesta
This project has received funding from the Swedish Research Council Formas (project no. 2018-01745-COBACCA), the Swedish Research Council VR (project no. 2019-05006), the Crafoord foundation (project no. 20210969), the Horizon Europe project AVENGERS (project no. 101081322) and the Academy of Finland (grant no. 338171). We thank the Swedish Strategic Research Program MERGE, the Profile Area Aerosols at the Faculty of Engineering at Lund University and the Profile Area Nature-Based Future Solutions at Lund University for strategic support. We gratefully acknowledge the Centre for Scientific and Technical Computing at Lund University, LUNARC, the Swedish National Infrastructure for Computing, SNIC and CSC - IT Center for Science, Finland, for computational resources. We thank ECCAD for archiving and distribution of data from CAMS. LUNARC is partially funded by the Swedish Research Council through grant agreement no. 2016-07213. J.E. thanks the Independent Research Fund Denmark grant number 9064-00001B for financial support. T.O. acknowledges the Swedish Research Council VR (grant no. 2019-04853) and the Swedish Research Council for Sustainable Development FORMAS (grant no. 2019-01433) for financial support. Funding through the European Commission Horizon Europe project FOCI,20 ”Non-CO2 Forcers and Their Climate, Weather, Air Quality and Health Impacts (project 101056783), FORCeS (grant agreement 821205) and Academy of Finland (ACCC Flagship, project 337549; academy projects 334792, 325681, 333397. The observations at SMEAR II are supported via Academy of Finland (328616, 345510) and via University of Helsinki (HY-ACTRIS). ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Li, Zijun; Buchholz, Angela; Hyttinen, Noora (Copernicus, 2024)Organosulfur (OS) compounds are important sulfur species in atmospheric aerosol particles, due to the reduction of global inorganic sulfur emissions. Understanding the physicochemical properties, such as hygroscopicity, ... -
Machine Learning Model to Predict Saturation Vapor Pressures of Atmospheric Aerosol Constituents
Hyttinen, Noora; Li, Linjie; Hallquist, Mattias; Wu, Cheng (American Chemical Society, 2024)We present a novel machine learning (ML) model for predicting saturation vapor pressures (psat), a physical property of use to describe transport, distribution, mass transfer, and fate of environmental toxins and contaminants. ... -
Towards automated inclusion of autoxidation chemistry in models : from precursors to atmospheric implications
Pichelstorfer, Lukas; Roldin, Pontus; Rissanen, Matti; Hyttinen, Noora; Garmash, Olga; Xavier, Carlton; Zhou, Putian; Clusius, Petri; Foreback, Benjamin; Golin, Almeida Thomas; Deng, Chenjuan; Baykara, Metin; Kurten, Theo; Boy, Michael (Royal Society of Chemistry, 2024)In the last few decades, atmospheric formation of secondary organic aerosols (SOA) has gained increasing attention due to their impact on air quality and climate. However, methods to predict their abundance are mainly ... -
Titanocene Selenide Sulfides Revisited : Formation, Stabilities, and NMR Spectroscopic Properties
Laasonen, Heli; Ikäheimonen, Johanna; Suomela, Mikko; Rautiainen, J. Mikko; Laitinen, Risto S. (MDPI, 2019)[TiCp2S5] (phase A), [TiCp2Se5] (phase F), and five solid solutions of mixed titanocene selenide sulfides [TiCp2SexS5−x] (Cp = C5H5−) with the initial Se:S ranging from 1:4 to 4:1 (phases B–E) were prepared by reduction ... -
Microscopic Insights Into the Formation of Methanesulfonic Acid–Methylamine–Ammonia Particles Under Acid-Rich Conditions
Liu, Min; Myllys, Nanna; Han, Yaning; Wang, Zhongteng; Chen, Liang; Liu, Wei; Xu, Jing (Frontiers Media SA, 2022)Understanding the microscopic mechanisms of new particle formation under acid-rich conditions is of significance in atmospheric science. Using quantum chemistry calculations, we investigated the microscopic formation ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.