Modeling atmospheric aging of small-scale wood combustion emissions : distinguishing causal effects from non-causal associations
Abstract
Small-scale wood combustion is a significant source of particulate emissions. Atmospheric transformation of wood combustion emissions is a complex process involving multiple compounds interacting simultaneously. Thus, an advanced methodology is needed to study the process in order to gain a deeper understanding of the emissions. In this study, we are introducing a methodology for simplifying this complex process by detecting dependencies of observed compounds based on a measured dataset. A statistical model was fitted to describe the evolution of combustion emissions with a system of differential equations derived from the measured data. The performance of the model was evaluated using simulated and measured data showing the transformation process of small-scale wood combustion emissions. The model was able to reproduce the temporal evolution of the variables in reasonable agreement with both simulated and measured data. However, as measured emission data are complex due to multiple simultaneous interacting processes, it was not possible to conclude if all detected relationships between the variables were causal or if the variables were merely co-variant. This study provides a step toward a comprehensive, but simple, model describing the evolution of the total emissions during atmospheric aging in both gas and particle phases.
Main Authors
Format
Articles
Research article
Published
2022
Series
Subjects
Publication in research information system
Publisher
Royal Society of Chemistry (RSC)
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202212155657Use this for linking
Review status
Peer reviewed
ISSN
2634-3606
DOI
https://doi.org/10.1039/D2EA00048B
Language
English
Published in
Environmental Science : Atmospheres
Citation
- Leinonen, V., Tiitta, P., Sippula, O., Czech, H., Leskinen, A., Isokääntä, S., Karvanen, J., & Mikkonen, S. (2022). Modeling atmospheric aging of small-scale wood combustion emissions : distinguishing causal effects from non-causal associations. Environmental Science : Atmospheres, 2(6), 1551-1567. https://doi.org/10.1039/D2EA00048B
Funder(s)
Research Council of Finland
Funding program(s)
Research profiles, AoF
Profilointi, SA

Additional information about funding
This work was supported by the Academy of Finland Centre of Excellence (grant no. 307331), Academy of Finland Flagship funding (grant no. 337550), the Academy of Finland Competitive funding to strengthen university research profiles (PROFI) for the University of Eastern Finland (grant no. 325022) and for the University of Jyväskylä (grant no. 311877) and the Nessling foundation. Data collection for this study has been partly funded by the European Union's 10 Horizon 2020 Research and Innovation Programme through the EUROCHAMP-2020 Infrastructure Activity (grant no. 730997). Funding sources have no involvement in study design, data analysis, or preparation of the manuscript.
Copyright© 2022 The Author(s). Published by the Royal Society of Chemistry