Show simple item record

dc.contributor.authorPichelstorfer, Lukas
dc.contributor.authorRoldin, Pontus
dc.contributor.authorRissanen, Matti
dc.contributor.authorHyttinen, Noora
dc.contributor.authorGarmash, Olga
dc.contributor.authorXavier, Carlton
dc.contributor.authorZhou, Putian
dc.contributor.authorClusius, Petri
dc.contributor.authorForeback, Benjamin
dc.contributor.authorGolin, Almeida Thomas
dc.contributor.authorDeng, Chenjuan
dc.contributor.authorBaykara, Metin
dc.contributor.authorKurten, Theo
dc.contributor.authorBoy, Michael
dc.date.accessioned2024-08-15T13:12:35Z
dc.date.available2024-08-15T13:12:35Z
dc.date.issued2024
dc.identifier.citationPichelstorfer, L., Roldin, P., Rissanen, M., Hyttinen, N., Garmash, O., Xavier, C., Zhou, P., Clusius, P., Foreback, B., Golin, A. T., Deng, C., Baykara, M., Kurten, T., & Boy, M. (2024). Towards automated inclusion of autoxidation chemistry in models : from precursors to atmospheric implications. <i>Environmental Science : Atmospheres</i>, <i>4</i>(8), 879-896. <a href="https://doi.org/10.1039/d4ea00054d" target="_blank">https://doi.org/10.1039/d4ea00054d</a>
dc.identifier.otherCONVID_233317315
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96637
dc.description.abstractIn the last few decades, atmospheric formation of secondary organic aerosols (SOA) has gained increasing attention due to their impact on air quality and climate. However, methods to predict their abundance are mainly empirical and may fail under real atmospheric conditions. In this work, a close-to-mechanistic approach allowing SOA quantification is presented, with a focus on a chain-like chemical reaction called "autoxidation". A novel framework is employed to (a) describe the gas-phase chemistry, (b) predict the products' molecular structures and (c) explore the contribution of autoxidation chemistry on SOA formation under various conditions. As a proof of concept, the method is applied to benzene, an important anthropogenic SOA precursor. Our results suggest autoxidation to explain up to 100% of the benzene-SOA formed under low-NOx laboratory conditions. Under atmospheric-like day-time conditions, the calculated benzene-aerosol mass continuously forms, as expected based on prior work. Additionally, a prompt increase, driven by the NO3 radical, is predicted by the model at dawn. This increase has not yet been explored experimentally and stresses the potential for atmospheric SOA formation via secondary oxidation of benzene by O3 and NO3.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.ispartofseriesEnvironmental Science : Atmospheres
dc.rightsCC BY 4.0
dc.titleTowards automated inclusion of autoxidation chemistry in models : from precursors to atmospheric implications
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202408155521
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange879-896
dc.relation.issn2634-3606
dc.relation.numberinseries8
dc.relation.volume4
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.subject.ysoilmakemia
dc.subject.ysobentseeni
dc.subject.ysomallintaminen
dc.subject.ysomolekyylit
dc.subject.ysoilmanlaatu
dc.subject.ysoilmakehätieteet
dc.subject.ysoilmasto
dc.subject.ysoaerosolit
dc.subject.ysoilmakehä
dc.subject.ysoaerosolifysiikka
dc.subject.ysohapettuminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p26207
jyx.subject.urihttp://www.yso.fi/onto/yso/p18851
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
jyx.subject.urihttp://www.yso.fi/onto/yso/p2984
jyx.subject.urihttp://www.yso.fi/onto/yso/p5028
jyx.subject.urihttp://www.yso.fi/onto/yso/p26208
jyx.subject.urihttp://www.yso.fi/onto/yso/p5639
jyx.subject.urihttp://www.yso.fi/onto/yso/p9802
jyx.subject.urihttp://www.yso.fi/onto/yso/p5393
jyx.subject.urihttp://www.yso.fi/onto/yso/p15192
jyx.subject.urihttp://www.yso.fi/onto/yso/p9119
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.datasethttps://doi.org/10.5281/zenodo.8087267
dc.relation.doi10.1039/d4ea00054d
jyx.fundinginformationAustrian Science Funds (FWF), grant no. J-4241 Schrödinger Programme. Swedish Research Councils FORMAS and VR (FORMAS project no. 2018-01745; VR project no. 2019-05006). Crafoord foundation (project no. 20210969). Research Council of Finland, grant no. 338171, 331207 and 336531. Research Council of Finland (Center of Excellence, grant number 346369). Research Council of Finland (ACCC Flagship, 337549). Jane and Aatos Erkko Foundation (JAES). EU H2020 project FORCeS (821205). European Commission Horizon Europe project FOCI (101056783). This project has received funding from the European Research Council under the European Union's Horizon 2020 Research and Innovation Programme under grant no. 101002728. University of Helsinki and Stockholm University (Autumn 2020 Arctic Avenue). Computational resources were provided by the CSC-IT Center for Science, Finland. We would like to thank the Environmental Department City of Malmö for kindly providing benzene observations from the Dalaplan station in Malmö.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0