dc.contributor.advisor | Rajala, Kai | |
dc.contributor.author | Kannisto, Erika | |
dc.date.accessioned | 2024-06-26T10:40:14Z | |
dc.date.available | 2024-06-26T10:40:14Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/96167 | |
dc.description.abstract | Tämän tutkielman tarkoituksena on tarkastella kolmiulotteisen avaruuden isometrioita eli kuvauksia, jotka säilyttävät pisteparien etäisyydet, sekä tetraedrin symmetriaryhmää. Symmetriaryhmä tarkoittaa kuvauksia, jotka kuvaavat tetraedrin takaisin itsekseen. Kolmiulotteisen avaruuden isometriat ovat samat kuin tason isometriat: siirto, kierto, peilaus ja siirtopeilaus. Nämä isometriat muodostavat sekä tasossa että kolmiulotteisessa avaruudessa ryhmän. Koska tavoitteena on tarkastella tetraedrin symmetriaryhmää, halutaan valita ne isometriat, jotka kuvaavat tetraedrin itsekseen. Tätä varten ainakin origon pitää pysyä paikoillaan, joten siirrot ja siirtopeilaukset ovat poissa laskuista. Kuitenkaan kaikki peilaukset tai kierrotkaan eivät pidä origoa paikoillaan; vain ne joiden akselit kulkevat origon läpi. Kutsutaan näitä isometrioita pallogeometrian isometrioiksi. Pallogeometriassa liikutaan yksikköpallon eli pallon, jonka säde on yksi pinnalla. Peilaukset pallogeometriassa voidaan ajatella siten, että peilausakselina on isoympyrä. Isoympyrä on tason, jonka kulkee origon läpi sekä pallokuoren leikkaus. Peilauksiin liittyy kiinteästi myös kolmen peilauksen lause, jonka mukaan jokainen pallogeometrian isometria voidaan esittää yhden, kahden tai kolmen peilauksen yhdisteenä. Kierrot ovat kahden peilauksen yhdisteitä. Yleisimpien kiertojen lausekkeet voidaan päätellä tason kiertojen esitysten avulla, mutta se ei ole tehokas tai tarkka tapa. Tällöin otetaan käyttöön kvaterniot eli kompleksikertoimiset kaksi kertaa kaksi -matriisit, joiden avulla kierrot saadaan esitettyä. Kvaternioiden myötä päästään tutustumaan kompleksilaskentaan, kun kvaterniot määritellään sekä neliulotteiseen että kolmiulotteiseen avaruuteen ja osoitetaan, että kvaterniot muodostavat jakorenkaan. Nämä tiedot yhdistämällä löydetään kuvaus, joka kuvaa pallogeometrian ja yleisemmin kolmiulotteisen avaruuden kierrot. Tutkielman lopuksi tarkastellaan tetraedrin symmetriaryhmän kiertoja ja miten ne esitetään kvaternioiden avulla. Kiertoja on kolmenlaisia ja yhteensä 12. Ensinnäkin on niin sanottu nollakierto eli tetraedri, jota ei ole kierretty. Tätä kutsutaan neutraalialkioksi. Toinen kiertotyyppi on niin sanotut puolikierrot, joissa kierretään 180 asteen verran ja näitä kiertoja on kolme. Viimeinen kiertotyyppi on niin sanotut kolmasosakierrot, joissa kierretään 120 asteen verran ja näitä on yhteensä kahdeksan. | fi |
dc.format.extent | 39 | |
dc.language.iso | fi | |
dc.subject.other | isometriat | |
dc.subject.other | kiertoryhmä | |
dc.title | Kolmiulotteiset isometriat | |
dc.identifier.urn | URN:NBN:fi:jyu-202406265011 | |
dc.type.ontasot | Master’s thesis | en |
dc.type.ontasot | Pro gradu -tutkielma | fi |
dc.contributor.tiedekunta | Matemaattis-luonnontieteellinen tiedekunta | fi |
dc.contributor.tiedekunta | Faculty of Sciences | en |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.oppiaine | Matematiikan opettajankoulutus | fi |
dc.contributor.oppiaine | Teacher education programme in Mathematics | en |
dc.rights.copyright | Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty. | fi |
dc.rights.copyright | This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited. | en |
dc.contributor.oppiainekoodi | 4041 | |
dc.subject.yso | matematiikka | |
dc.subject.yso | kompleksiluvut | |
dc.subject.yso | geometria | |
dc.subject.yso | ryhmäteoria | |