University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Kompleksiset vektoriavaruudet

Thumbnail
View/Open
407.4 Kb

Downloads:  
Show download detailsHide download details  
Authors
Särkijärvi, Tuomas
Date
2020
Discipline
Matematiikan opettajankoulutusTeacher education programme in Mathematics
Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

 
Tässä matematiikan pro gradu -tutkielmassa perehdytään kompleksisiin vektoriavaruuksiin ja sivutaan myös niiden sovelluskohteita. Tutkielman tavoitteena on esitellä riittävät tiedot, jotta lukija voi muodostaa eheän kokonaisuuden kompleksisten vektoriavaruuksien perusteista ja yhdistää näin saatua tietoa jo tunnettuihin reaaliavaruuden tapauksiin. Tutkielman alussa määritellään yleisesti reaaliset vektoriavaruudet ja aliavaruudet. Työn edetessä laajennetaan tarkastelua ja määritellään myös tutkielman kannalta oleellinen kompleksinen vektoriavaruus. Määritelmät ovat hyvin lähellä toisiaan, mutta reaalisessa vektoriavaruudessa vektoreiden skalaarikertoimet ovat reaalisia, kun taas kompleksisissa vektoriavaruuksissa vektoreiden skalaarikertoimet ovat kompleksilukuja. Yleisimpänä esimerkkinä reaalisesta vektoriavaruudesta on R^n ja vastaavasti yleisin esimerkki kompleksisesta vektoriavaruudesta on C^n. Kompleksilukujen perusteita kerrataan hieman laskutoimituksien ja ominaisuuksien osalta, ennenkuin syvennytään tarkemmin kompleksisiin vektoriavaruuksiin. Työn edetessä tarkastellaan kompleksisia vektoreita ja matriiseja, sekä niiden ominaisuuksia. Oleellista on ymmärtää vektoreihin ja matriiseihin liittyviä käsitteitä reaaliavaruudessa ja kompleksiavaruudessa, joten tarkastelu etenee johdonmukaisesti reaaliavaruuden tapauksista ja ominaisuuksista kohti kompleksiavaruuden tilanteita. Oleellisimpia määritelmiä ja tuloksia voidaan laajentaa melko vaivattomasti suoraan reaaliavaruudesta kompleksiavaruuteen. Esimerkiksi matriisi A on reaalinen matriisi, mikäli sen alkiot ovat reaalilukuja. Vastaavasti matriisi A on kompleksinen matriisi, mikäli sen alkiot ovat kompleksilukuja. Tähän liittyen voidaan laajentaa kaikki reaalisten matriisien laskutoimitukset ja matriisien perusominaisuudet koskemaan myös kompleksisia matriiseja. Yhtenä tutkielman merkittävimpänä tarkastelun kohteena on ominaisarvoteoria, erityisesti kompleksiavaruudessa. Määritelmän mukaan reaalisella n×n -matriisilla A on reaalinen ominaisvektori x jos on olemassa reaalinen kerroin λ siten, että Ax = λx. Kompleksiavaruudessa ominaisarvot ja ominaisvektorit matriisille määritellään vastaavasti, mutta vektori x ja ominaisarvo λ ovat kompleksisia. Ratkaistaessa reaalisen n × n -matriisin ominaisarvoja ja -vektoreita havaitaan, että ominaisarvoja voi olla korkeintaan n kappaletta ja edelleen tällaisen matriisin ominaisarvot voivat olla kompleksisia, vaikka matriisin alkiot olisivat olleet reaalilukuja. Reaalisesta tilanteesta poiketen, kompleksisella n × n -matriisilla on aina (kertaluvut huomioiden) n kappaletta ominaisarvoja, joista osa voi olla reaalisia ja osa kompleksisia. Tutkielmassa perehdytään tarkemmin reaalisiin ja kompleksisiin 2×2 -matriiseihin, joiden avulla selvitetään matriisien ominaisarvojen geometrista tulkintaa ja graafisia ominaisuuksia. Työn lopussa esitetään, kuinka matriisien kompleksiset ominaisarvot näkyvät vektorin kiertoina ja pituuden muutoksena kun kerrotaan vektoria x matriisilla A. ...
Keywords
matriisit matematiikka lineaarialgebra ominaisarvot kompleksiluvut matriisilaskenta algebra vektorit (matematiikka)
URI

http://urn.fi/URN:NBN:fi:jyu-202003252537

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [25049]

Related items

Showing items with similar title or keywords.

  • Perronin ja Frobeniuksen lause 

    Huupponen, Tuukka (2023)
    Tässä tutkielmassa perehdytään matriisiteoriaan. Tarkastelu keskittyy neliömatriiseihin, niiden ominaisarvoihin ja niitä vastaaviin ominaisvektoreihin. Tarkastelu rajataan kahteen osaan, joista toiseen esitetään ...
  • Itsetarkistuvat STACK-tehtävät kurssille Lineaarinen algebra ja geometria 1 

    Räihä, Sauli (2019)
    Tässä pro gradu -tutkielmassa esitellään Jyväskylän yliopiston matematiikan ja tilastotieteen laitoksella luennoitavalle kurssille Lineaarinen algebra ja geometria 1 luotu STACK-tehtäväkokoelma ja työprosessin eri vaiheita. ...
  • Matriisin Hessenbergin muoto 

    Holopainen, Niko (2013)
  • Vektoriavaruudet ja niiden representaatiot 

    Hietala, Roope (2022)
    Tässä työssä tutkitaan erilaisia representaatioita vektoriavaruuksille sekä Hilbertin avaruuden rakennetta. Hilbertin avaruudet ovat täydellisiä sisätuloavaruuksia, jotka ovat yleistys euklidiselle avaruudelle. Tavoitteena ...
  • Matriisin Jordanin muoto 

    Artemenko, Maryia (2020)
    Tämä matematiikan pro gradu -tutkielma käsittelee matriisin Jordanin normaalimuotoa. Jordanin muoto on matriisin muoto, joka on lähempänä diagonaalimuotoa. Se on hyödyllinen tapauksessa, kun matriisi ei ole diagonalisoituva. ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre