dc.contributor.author | Aghaei Pour, Pouya | |
dc.contributor.author | Bandaru, Sunith | |
dc.contributor.author | Afsar, Bekir | |
dc.contributor.author | Emmerich, Michael | |
dc.contributor.author | Miettinen, Kaisa | |
dc.date.accessioned | 2024-06-12T11:58:09Z | |
dc.date.available | 2024-06-12T11:58:09Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Aghaei Pour, P., Bandaru, S., Afsar, B., Emmerich, M., & Miettinen, K. (2024). A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods. <i>IEEE Transactions on Evolutionary Computation</i>, <i>28</i>(3), 778-787. <a href="https://doi.org/10.1109/TEVC.2023.3272953" target="_blank">https://doi.org/10.1109/TEVC.2023.3272953</a> | |
dc.identifier.other | CONVID_183233356 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/95813 | |
dc.description.abstract | In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution process and guides the solution process toward her/his desired region with preference information. However, there have not been many studies regarding the performance evaluation of interactive evolutionary methods. On the other hand, indicators have been developed for a priori methods, where the DM provides preference information before optimization. In the literature, some studies treat interactive evolutionary methods as a series of a priori steps when assessing and comparing them. In such settings, indicators designed for a priori methods can be utilized. In this paper, we propose a novel performance indicator for interactive evolutionary multiobjective optimization methods and show how it can assess the performance of these interactive methods as a whole process and not as a series of separate steps. In addition, we demonstrate the shortcomings of using indicators designed for a priori methods for comparing interactive evolutionary methods. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartofseries | IEEE Transactions on Evolutionary Computation | |
dc.rights | CC BY 4.0 | |
dc.subject.other | pareto optimization | |
dc.subject.other | linear programming | |
dc.subject.other | terminology | |
dc.subject.other | task analysis | |
dc.subject.other | space exploration | |
dc.subject.other | convergence | |
dc.subject.other | switches | |
dc.subject.other | quality indicators | |
dc.subject.other | interactive evolutionary algorithms | |
dc.subject.other | decision making | |
dc.subject.other | method comparison | |
dc.subject.other | hypervolume indicator | |
dc.title | A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202406124580 | |
dc.contributor.laitos | Bio- ja ympäristötieteiden laitos | fi |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Department of Biological and Environmental Science | en |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 778-787 | |
dc.relation.issn | 1089-778X | |
dc.relation.numberinseries | 3 | |
dc.relation.volume | 28 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 322221 | |
dc.subject.yso | pareto-tehokkuus | |
dc.subject.yso | indikaattorit | |
dc.subject.yso | monitavoiteoptimointi | |
dc.subject.yso | evoluutiolaskenta | |
dc.subject.yso | päätöksenteko | |
dc.subject.yso | optimointi | |
dc.subject.yso | päätöksentukijärjestelmät | |
dc.subject.yso | interaktiivisuus | |
dc.subject.yso | algoritmit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28039 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8365 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p32016 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28071 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8743 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13477 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27803 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10823 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14524 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1109/TEVC.2023.3272953 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | This research was partly supported by the Academy of Finland (Grant No. 322221) and is related to the thematic research area DEMO (Decision Analytics utilizing Causal Models and Multiobjective Optimization, jyu.fi/demo) of the University of Jyvaskyla. | |
dc.type.okm | A1 | |