University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Väitöskirjat
  • View Item
JYX > Opinnäytteet > Väitöskirjat > View Item

Handling expensive multiobjective optimization problems with evolutionary algorithms

Thumbnail
View/Open
5.6Mb

Downloads:  
Show download detailsHide download details  
Published in
Jyväskylä studies in computing
Authors
Chugh, Tinkle
Date
2017
Discipline
Tietotekniikka

 
Multiobjective optimization problems (MOPs) with a large number of conflicting objectives are often encountered in industry. Moreover, these problem typically involve expensive evaluations (e.g. time consuming simulations or costly experiments), which pose an extra challenge in solving them. In this thesis, we first present a survey of different methods proposed in the literature to handle MOPs with expensive evaluations. We observed that most of the existing methods cannot be easily applied to problems with more than three objectives. Therefore, we propose a Kriging-assisted reference vector guided evolutionary algorithm (K-RVEA) for problems with at least three expensive objectives. The algorithm dynamically balances between convergence and diversity by using reference vectors and uncertainty information from the Kriging models. We demonstrate the practicality of K-RVEA with an air intake ventilation system in a tractor. The problem has three expensive objectives based on time consuming computational fluid dynamics simulations. We also emphasize the challenges of formulating a meaningful optimization problem reflecting the needs of the decision maker (DM) and connecting different pieces of simulation tools. Furthermore, we extend K-RVEA to handle constrained MOPs. We found out that infeasible solutions can play a vital role in the performance of the algorithm. In many real-world MOPs, the DM is usually interested in one or a small set of Pareto optimal solutions based on her/his preferences. Additionally, it has been noticed in practice that sometimes it is easier for the DM to identify non- preferable solutions instead of preferable ones. Therefore, we finally propose an interactive simple indicator-based evolutionary algorithm (I-SIBEA) to incorporate the DM’s preferences in the form of preferable and/or non-preferable solutions. Inspired by the involvement of the DM, we briefly introduce a version of K-RVEA to incorporate the DM’s preferences when using surrogates. By providing efficient algorithms and studies, this thesis will be helpful to practitioners in industry and increases their ability of solving complex real-world MOPs. ...
Publisher
University of Jyväskylä
ISBN
978-951-39-7090-1
ISSN Search the Publication Forum
1456-5390
Keywords
surrogate monitavoiteoptimointi metamodelling many-objective optimization decision making computational cost Pareto optimality optimointi matemaattinen optimointi pareto-tehokkuus evoluutiolaskenta algoritmit
URI

http://urn.fi/URN:ISBN:978-951-39-7090-1

Metadata
Show full item record
Collections
  • Väitöskirjat [2678]
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement
Open Science Centre