dc.contributor.author | Lučić, Danka | |
dc.contributor.author | Pasqualetto, Enrico | |
dc.date.accessioned | 2024-05-15T08:34:41Z | |
dc.date.available | 2024-05-15T08:34:41Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Lučić, D., & Pasqualetto, E. (2024). Yet another proof of the density in energy of Lipschitz functions. <i>Manuscripta Mathematica</i>, <i>Early online</i>. <a href="https://doi.org/10.1007/s00229-024-01562-2" target="_blank">https://doi.org/10.1007/s00229-024-01562-2</a> | |
dc.identifier.other | CONVID_213520052 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/94840 | |
dc.description.abstract | We provide a new, short proof of the density in energy of Lipschitz functions into the metric Sobolev space defined by using plans with barycenter (and thus, a fortiori, into the Newtonian–Sobolev space). Our result covers first-order Sobolev spaces of exponent p ∈ (1,∞), defined over a complete separable metric space endowed with a boundedlyfinite Borel measure. Our proof is based on a completely smooth analysis: first we reduce the problem to the Banach space setting, where we consider smooth functions instead of Lipschitz ones, then we rely on classical tools in convex analysis and on the superposition principle for normal 1-currents. Along the way, we obtain a new proof of the density in energy of smooth cylindrical functions in Sobolev spaces defined over a separable Banach space endowed with a finite Borel measure. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Manuscripta Mathematica | |
dc.rights | CC BY 4.0 | |
dc.title | Yet another proof of the density in energy of Lipschitz functions | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202405153610 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0025-2611 | |
dc.relation.volume | Early online | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2024 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | differentiaaligeometria | |
dc.subject.yso | funktionaalianalyysi | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16682 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17780 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1007/s00229-024-01562-2 | |
jyx.fundinginformation | The second named author is supported by the MIUR-PRIN 202244A7YL project “Gradient Flows and Non-Smooth Geometric Structures with Applications to Optimization and Machine Learning”. Open Access funding provided by University of Jyväskylä (JYU). | |
dc.type.okm | A1 | |