Näytä suppeat kuvailutiedot

dc.contributor.authorLučić, Danka
dc.contributor.authorPasqualetto, Enrico
dc.date.accessioned2024-05-15T08:34:41Z
dc.date.available2024-05-15T08:34:41Z
dc.date.issued2024
dc.identifier.citationLučić, D., & Pasqualetto, E. (2024). Yet another proof of the density in energy of Lipschitz functions. <i>Manuscripta Mathematica</i>, <i>Early online</i>. <a href="https://doi.org/10.1007/s00229-024-01562-2" target="_blank">https://doi.org/10.1007/s00229-024-01562-2</a>
dc.identifier.otherCONVID_213520052
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/94840
dc.description.abstractWe provide a new, short proof of the density in energy of Lipschitz functions into the metric Sobolev space defined by using plans with barycenter (and thus, a fortiori, into the Newtonian–Sobolev space). Our result covers first-order Sobolev spaces of exponent p ∈ (1,∞), defined over a complete separable metric space endowed with a boundedlyfinite Borel measure. Our proof is based on a completely smooth analysis: first we reduce the problem to the Banach space setting, where we consider smooth functions instead of Lipschitz ones, then we rely on classical tools in convex analysis and on the superposition principle for normal 1-currents. Along the way, we obtain a new proof of the density in energy of smooth cylindrical functions in Sobolev spaces defined over a separable Banach space endowed with a finite Borel measure.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesManuscripta Mathematica
dc.rightsCC BY 4.0
dc.titleYet another proof of the density in energy of Lipschitz functions
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202405153610
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0025-2611
dc.relation.volumeEarly online
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2024
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysodifferentiaaligeometria
dc.subject.ysofunktionaalianalyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
jyx.subject.urihttp://www.yso.fi/onto/yso/p17780
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s00229-024-01562-2
jyx.fundinginformationThe second named author is supported by the MIUR-PRIN 202244A7YL project “Gradient Flows and Non-Smooth Geometric Structures with Applications to Optimization and Machine Learning”. Open Access funding provided by University of Jyväskylä (JYU).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0