Self-similar solution for fractional Laplacian in cones
Bogdan, K., Knosalla, P., Leżaj, Ł., & Pilarczyk, D. (2024). Self-similar solution for fractional Laplacian in cones. Electronic Journal of Probability, 29, Article 54. https://doi.org/10.1214/24-EJP1111
Julkaistu sarjassa
Electronic Journal of ProbabilityPäivämäärä
2024Tekijänoikeudet
© 2024 the Authors
We construct a self-similar solution of the heat equation for the fractional Laplacian with Dirichlet boundary conditions in every fat cone. Furthermore, we give the entrance law from the vertex and the Yaglom limit for the corresponding killed isotropic stable Lévy process and precise large-time asymptotics for solutions of the Cauchy problem in the cone.
Julkaisija
Institute of Mathematical StatisticsISSN Hae Julkaisufoorumista
1083-6489Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/213462417
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Krzysztof Bogdan was partially supported by the National Science Centre (Poland): grant 2017/27/B/ST1/01339. Łukasz Leżaj was partially supported by the National Science Centre (Poland): grant 2021/41/N/ST1/04139.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Hierarchical log Gaussian Cox process for regeneration in uneven-aged forests
Kuronen, Mikko; Särkkä, Aila; Vihola, Matti; Myllymäki, Mari (Springer Science and Business Media LLC, 2022)We propose a hierarchical log Gaussian Cox process (LGCP) for point patterns, where a set of points xx affects another set of points yy but not vice versa. We use the model to investigate the effect of large trees on the ... -
Markov chain backward stochastic differential equations in modeling insurance policy
Hänninen, Henri (2022)Tässä tutkielmassa tarkastelemme henkivakuutuksen varantoa. Mallinnamme henkivakuutusta Markovin prosessin avulla, ja varannon määrittelyyn ja mallintamiseen käytämme Markovin ketju BSDE:itä (Markovin ketju takaperoinen ... -
Uncertainty quantification on a spatial Markov-chain model for the progression of skin cancer
Vermolen, Fred; Pölönen, Ilkka (Springer, 2020)A spatial Markov-chain model is formulated for the progression of skin cancer. The model is based on the division of the computational domain into nodal points, that can be in a binary state: either in ‘cancer state’ or ... -
Coupled conditional backward sampling particle filter
Lee, Anthony; Singh, Sumeetpal S.; Vihola, Matti (Institute of Mathematical Statistics, 2020)The conditional particle filter (CPF) is a promising algorithm for general hidden Markov model smoothing. Empirical evidence suggests that the variant of CPF with backward sampling (CBPF) performs well even with long time ... -
Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance
Franks, Jordan; Vihola, Matti (Elsevier, 2020)We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.