Hierarchical log Gaussian Cox process for regeneration in uneven-aged forests
Kuronen, M., Särkkä, A., Vihola, M., & Myllymäki, M. (2022). Hierarchical log Gaussian Cox process for regeneration in uneven-aged forests. Environmental and Ecological Statistics, 29(1), 185-205. https://doi.org/10.1007/s10651-021-00514-3
Julkaistu sarjassa
Environmental and Ecological StatisticsPäivämäärä
2022Tekijänoikeudet
© 2021 the Authors
We propose a hierarchical log Gaussian Cox process (LGCP) for point patterns, where a set of points xx affects another set of points yy but not vice versa. We use the model to investigate the effect of large trees on the locations of seedlings. In the model, every point in xx has a parametric influence kernel or signal, which together form an influence field. Conditionally on the parameters, the influence field acts as a spatial covariate in the intensity of the model, and the intensity itself is a non-linear function of the parameters. Points outside the observation window may affect the influence field inside the window. We propose an edge correction to account for this missing data. The parameters of the model are estimated in a Bayesian framework using Markov chain Monte Carlo where a Laplace approximation is used for the Gaussian field of the LGCP model. The proposed model is used to analyze the effect of large trees on the success of regeneration in uneven-aged forest stands in Finland.
...
Julkaisija
Springer Science and Business Media LLCISSN Hae Julkaisufoorumista
1352-8505Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/100248208
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Open access funding provided by Natural Resources Institute Finland (LUKE). MK, MM and MV were financially supported by the Academy of Finland (Project Numbers 306875, 327211, 295100 and 315619) and AS by the Swedish Research Council (VR 2018-03986).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo
Vihola, Matti; Helske, Jouni; Franks, Jordan (Wiley-Blackwell, 2020)We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the ... -
On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction
Vihola, Matti; Franks, Jordan (Oxford University Press, 2020)Approximate Bayesian computation enables inference for complicated probabilistic models with intractable likelihoods using model simulations. The Markov chain Monte Carlo implementation of approximate Bayesian computation ... -
Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions
Chada, Neil K.; Franks, Jordan; Jasra, Ajay; Law, Kody J.; Vihola, Matti (Society for Industrial & Applied Mathematics (SIAM), 2021)We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretization bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation ... -
Efficient Bayesian generalized linear models with time-varying coefficients : The walker package in R
Helske, Jouni (Elsevier BV, 2022)The R package walker extends standard Bayesian general linear models to the case where the effects of the explanatory variables can vary in time. This allows, for example, to model the effects of interventions such as ... -
Conditional particle filters with diffuse initial distributions
Karppinen, Santeri; Vihola, Matti (Springer, 2021)Conditional particle filters (CPFs) are powerful smoothing algorithms for general nonlinear/non-Gaussian hidden Markov models. However, CPFs can be inefficient or difficult to apply with diffuse initial distributions, which ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.