dc.contributor.author | Julin, Vesa | |
dc.date.accessioned | 2024-04-25T07:28:41Z | |
dc.date.available | 2024-04-25T07:28:41Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Julin, V. (2024). Flat flow solution to the mean curvature flow with volume constraint. <i>Advances in Calculus of Variations</i>, <i>Early online</i>. <a href="https://doi.org/10.1515/acv-2023-0047" target="_blank">https://doi.org/10.1515/acv-2023-0047</a> | |
dc.identifier.other | CONVID_213311943 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/94472 | |
dc.description.abstract | In this paper I will revisit the construction of a global weak solution to the volume preserving mean curvature flow via discrete minimizing movement scheme by Mugnai, Seis and Spadaro [L. Mugnai, C. Seis and E. Spadaro, Global solutions to the volume-preserving mean-curvature flow, Calc. Var. Partial Differential Equations 55 2016, 1, Article ID 18]. This method is based on the gradient flow approach due to Almgren, Taylor and Wang [F. Almgren, J. E. Taylor and L. Wang, Curvature-driven flows: a variational approach, SIAM J. Control Optim. 31 1993, 2, 387–438] and Luckhaus and Sturzenhecker [S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations 3 1995, 2, 253–271] and my aim is to replace the volume penalization with the volume constraint directly in the discrete scheme, which from practical point of view is perhaps more natural. A technical novelty is the proof of the density estimate which is based on second variation argument | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Walter de Gruyter GmbH | |
dc.relation.ispartofseries | Advances in Calculus of Variations | |
dc.rights | CC BY 4.0 | |
dc.subject.other | Mean-curvature flow | |
dc.subject.other | volume constraint | |
dc.subject.other | gradient flow | |
dc.subject.other | time discretization | |
dc.title | Flat flow solution to the mean curvature flow with volume constraint | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202404253099 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1864-8258 | |
dc.relation.volume | Early online | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 the author(s), published by De Gruyter | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 314227 | |
dc.relation.grantnumber | 347550 | |
dc.subject.yso | osittaisdifferentiaaliyhtälöt | |
dc.subject.yso | differentiaaligeometria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12392 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16682 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1515/acv-2023-0047 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Research costs of Academy Research Fellow, AoF | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiatutkijan tutkimuskulut, SA | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | The author is supported by the Academy of Finland, grants no. 314227 and no. 347550. | |
dc.type.okm | A1 | |