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Abstract: In this paper I will revisit the construction of a global weak solution to the volume preserving mean
curvature flow via discrete minimizing movement scheme by Mugnai, Seis and Spadaro [L. Mugnai, C. Seis
and E. Spadaro, Global solutions to the volume-preserving mean-curvature flow, Calc. Var. Partial Differential
Equations 55 (2016), no. 1, Article ID 18]. This method is based on the gradient flow approach due to Almgren,
Taylor and Wang [F. Almgren, J. E. Taylor and L. Wang, Curvature-driven flows: a variational approach, SIAM
J. Control Optim. 31 (1993), no. 2, 387–438] and Luckhaus and Sturzenhecker [S. Luckhaus and T. Sturzenhecker,
Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations 3
(1995), no. 2, 253–271] and my aim is to replace the volume penalization with the volume constraint directly in
the discrete scheme, which frompractical point of view is perhapsmore natural. A technical novelty is the proof
of the density estimate which is based on second variation argument.
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1 Introduction

A smooth family of set (Et)t≥0 is said to evolve according to volume preserving mean curvature flow if the
normal velocity Vt is proportional to the mean curvature HEt as

Vt = −(HEt − H̄Et ) on ∂Et , (1.1)

where H̄Et = −∫∂Et HEt dHn . Such a geometric equation has been proposed in the physical literature to model
coarsening phenomena, where the system consisting of several subdomains evolves such that it decreases the
interfacial area while keeping the total volume unchanged [7, 18]. From purely mathematical point of view the
equation (1.1) can be seen as the L2-gradient flow of the surface area under the volume constraint [18]. One has
to be careful in this interpretation as the Riemannian distance between two sets is in general degenerate [16]. In
order to overcome this one may use the idea due to Almgren, Taylor and Wang [2] and Luckhaus and Sturzen-
hecker [14] and to view (1.1) as the gradient flow of the surface area with respect to a different, non-degenerate,
distance. Using the gradient flow structure, one may then construct a discrete-in-time approximation to the
solution of (1.1) via the Euler implicit method, also known as the minimizing movements scheme. By letting the
time step to zero, one then obtains a candidate for a weak solution of (1.1) called flat flow, as the convergence is
measured in terms of the “flat norm”. This method is implemented to the volume preserving setting in [19].

In [19] the authors observe that from technical point of view it is easier to replace the volume constraint
of the problem with volume penalization, as this simplifies certain regularity issues at the level of the discrete
approximation. My aim here is to show that one may construct the flat flow solution to (1.1) by implementing
the volume constraint in the minimizing movements scheme directly and thus avoid the volume penalization.
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Let me quickly recall the discrete minimizing movements scheme for (1.1). One defines a sequence of
sets (Ehk)k , with fixed time step h > 0, iteratively such that E

h
0 = E0, where E0 is the given initial set, and E

h
k+1 is

a minimizer of the functional

P(E) + 1
h
∫
E

d̄Ehk dx under the constraint |E| = |Ehk |.

Here P(E) denotes the perimeter (generalized surface area) of the set E and d̄F is the signed distance function
of the set F (see next section). One then defines an approximative flat flow solution to (1.1) (Eht )t≥0 from the
previous sequence by Eht = Ehk for t ∈ [kh, (k + 1)h). Any cluster point of (E

h
t )t≥0 is then defined as flat flow

solution to (1.1). The advantage is that such a solution is defined for all times and for rough initial data. The
main result in the paper is the existence of a flat flow solution.

Theorem 1. Assume that E0 ⊂ ℝn+1 is an open and bounded set with finite perimeter and let (Eht )t≥0 be an approx-
imative flat flow solution to (1.1) stating from E0 (see Definition 2.1). Then there exists a family of bounded sets of
finite perimeter (Et)t≥0 and a subsequence hk → 0 such that

lim
hk→0
|Ehkt Δ Et| = 0 for a.e. t ≥ 0

and for every 0 < t < s it holds |Et| = |E0|, P(Et) ≤ P(E0) and

|Et Δ Es| ≤ C√s − t,

where C depends on the dimension and on E0. Moreover, if the initial set E0 is C1,1-regular, then any such limit flow
(Et)t≥0 agrees with the unique classical solution of (1.1) as long as the latter exists.

The above theorem thus provides the existence of a flat flow solution and guarantees that this notion is consis-
tent with the classical solution when the initial set is regular enough. The disadvantage of the flat flow is that it
is not clear if it provides a solution to the original equation (1.1) in any weak sense after the first singular time.
However, the conditional result in the spirit of Luckhaus and Sturzenhecker [14] holds also in this case.

Theorem 2. Let (Eht )t≥0 be an approximative flat flow solution to (1.1) and let (Ehkt )t≥0 be the converging subse-
quence in Theorem 1. Assume further that it holds

lim
hk→0

P(Ehkt ) = P(Et) for a.e. t ≥ 0.

Then for n ≤ 6 the flat flow (Et)t≥0 is a distributional solution to (1.1) (see Definition 4.5).

One may also try to view equation (1.1) as a mean curvature flow with forcing, where the forcing term depends
on the flow itself. In this way one may try to use different methods to construct a solution to the equation see,
e.g., [5, 6]. I also refer the recent work [13] for a weak-strong uniqueness result related to (1.1).

As I already mentioned, the flat flow is defined for all times and one may study its asymptotical behavior.
Indeed, by using themethods from [10, 11] onemay deduce the convergence of the flow in low dimensions. I will
state this merely as a remark as it follows from the above methods without any modifications.

Remark 1.1. Assume that E0 ⊂ ℝn+1, with n ≤ 2, is as in Theorem 1 and let (Et)t≥0 be a limit flat flow. When
n = 1, the flow Et converges to a union of disjoint balls exponentially fast and when n = 2 the flow converges to
a union of disjoint balls up to a possible translation of the components.

The main technical challenge in proving Theorem 1 is to obtain the sharp density estimate for the discrete
flow. This is also the main technical novelty of this paper. There are several techniques to deal with the volume
constraint in variational problems, e.g., by using the argument from [3] (see also [15, Lemma 17.21]) or from [8]
(see also [4, 9]). However, due to the presence of the dissipation term in the energy it is not obvious how to apply
these arguments in order to obtain sharp density estimates in terms of the time step h. I will use an argument
which is based on the second variation condition of the energy to prove the density estimate in Proposition 3.1.
After this the proof of Theorem 1 follows exactly as in [14, 19] and the consistency follows almost directly using
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the argument in [12]. The proof also provides the dissipation inequality and therefore the results in [10, 11]
hold and one obtains the result stated in Remark 1.1. Finally, I would like to point out that this article is not
self-consistent as I will take several well-known arguments for granted, in particular, in Section 4.

2 Preliminaries

In this section I will briefly introduce the notation, the definition of the flat flow solution and recall some of its
basic properties.

Given a set E ⊂ ℝn+1, the distance function dist( ⋅ , E) : ℝn+1 → [0,∞) is defined, as usual, as

dist(x, E) := inf
y∈E
|x − y|

and denote the signed distance function by d̄E : ℝn+1 → ℝ,

d̄E(x) :=
{
{
{

−dist(x, ∂E) for x ∈ E,
dist(x, ∂E) for x ∈ ℝn+1 \ E.

Then clearly it holds dist( ⋅ , ∂E) = |d̄E|. I denote the ball with radius r centered at x by Br(x) and by Br if it is
centered at the origin.

For a measurable set E ⊂ ℝn+1 the perimeter in an open set U ⊂ ℝn+1 is defined as

P(E, U) := sup{∫
E

div X dx : X ∈ C10(U,ℝ
n+1), ‖X‖L∞ ≤ 1}

and write P(E) = P(E,ℝn+1). If P(E) <∞, then E is called a set of finite perimeter. For an introduction to the
topic I refer to [15]. The reduced boundary of a set of finite perimeter E is denoted by ∂∗E and the generalized
unit outer normal by νE . Note that it holds P(E, U) = Hn(∂∗E ∩ U) for open sets U . Recall also that if E is regular
enough, say with Lipschitz boundary, then P(E) = Hn(∂E). For a given vector field X ∈ C1(ℝn+1 ,ℝn+1) and a set
of finite perimeter E denote the tangential divergence on ∂E∗ as divτ X = div X − ⟨DXνE , νE⟩. The distributional
mean curvature HE ∈ L1(∂∗E,ℝ) is defined via the divergence theorem such that for every test vector field
X ∈ C10(ℝn+1 ,ℝn+1) it holds

∫
∂∗E

divτ X dHn = ∫
∂∗E

HE⟨X, νE⟩ dHn .

I will consider a flat flow solution to (1.1) in the spirit of Almgren, Taylor and Wang [2] and Luckhaus and
Sturzenhecker [14]. To this end, for a fixed h ∈ (0, 1) and a given (open) set F ⊂ ℝn+1, I define the functional

Fh(E, F) = P(E) +
1
h
∫
E

d̄F dx. (2.1)

The flat flow solution is defined analogously as in [19].

Definition 2.1. Let E0 ⊂ ℝn+1 be an open and bounded set of finite perimeter and fix h ∈ (0, 1). Define the
sequence of sets (Ehk)

∞
k=0 iteratively as E

h
0 = E0 and E

h
k+1 is a minimizer of the problem

min{Fh(E, Ehk) : |E| = |E0|}.

Moreover, define an approximative flat flow (Eht )t≥0 for (1.1) starting from E0 as

Eht = Ehk for t ∈ [kh, (k + 1)h).

One has to be careful in the definition of the functional (2.1) if the set F is merely a set of finite perimeter
as its value depends on the choice of the representative of F. One may overcome this by choosing a proper
representative of the set F. However, this is not necessary as the regularity theorem below implies that one
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may in fact assume the sets Ehk to be open. The difference in Definition 2.1 to the scheme in [19] is that here
the minimizing problem is under volume constraint. On one hand this makes the minimization problem more
natural, but on the other hand, it makes the quantitative density estimates more difficult to prove.

For a given open and bounded set F ⊂ ℝn+1 consider the minimization problem

min{Fh(E, F) : |E| = |F|}, (2.2)

where Fh( ⋅ , F) is defined in (2.1). One may use an argument similar to [9] or [15, Lemma 17.21] to remove the
volume constraint in (2.2) and deduce that a minimizer of (2.2) is a minimizer also for

min{Fh(E, F) + Λ̃||E| − |F||}, (2.3)

when Λ̃ is chosen large. Note that the constant Λ̃may have nonoptimal dependence on E and on h. However, the
property (2.3) is enough to deduce qualitative regularity properties since it implies that the minimizer inherits
the regularity from the theory of the perimeter minimizers [15]. One may also write the Euler–Lagrange equa-
tion and by standard calculations (see, e.g., [1]) we have the second variation condition. We state this in the
following proposition.

Proposition 2.2. Let F ⊂ ℝn+1 be an open and bounded set, fix h ∈ (0, 1) and let E be a minimizer of (2.2). Then E
can be chosen to be open, which topological boundary is C2,α-regular up to a relatively closed singular set which
Hausdorff dimension is at most n − 7. The regular part is exactly the reduced boundary ∂∗E.

The Euler–Lagrange equation
dF
h
= −HE + λ, (2.4)

where λ ∈ ℝ is the Lagrange-multiplier, holds point-wise on ∂∗E and in a distributional sense on ∂E. The
quadratic form associated with the second variation of the energy is non-negative, i.e., for all φ ∈ H1(∂∗E)
with ∫∂∗E φ dH

n = 0 it holds

∫
∂∗E

|∇τφ|2 − |BE|2φ2 dHn +
1
h
∫
∂∗E

⟨∇d̄F , νE⟩φ2 dHn ≥ 0, (2.5)

where BE(x) denotes the second fundamental form of E at x ∈ ∂∗E.

Proof. Since the argument is standard, I will only give the outline. As I already mentioned, the minimizer E is
also aminimizer of problem (2.3) for some large constant Λ̃, which depends on h and on E itself. This implies that
the set E is a Λ-minimizer of the perimeter and thus the reduced boundary ∂∗E is relatively open, C1,α-regular
hypersurface and the singular set ∂E \ ∂∗E has dimension at most n − 7 (see [15]). The C2,α-regularity then
follows from the Euler–Lagrange equation and from standard Schauder-estimates for elliptic PDEs.

One may obtain the second variation condition (2.5) by using the argument from [1]. Indeed, given a func-
tion φ ∈ C20(∂∗E) with ∫∂∗E φ dH

n = 0, we may construct a family of diffeomorphisms Φt such that Φ0 = id,
|Φt(E)| = |E| and ∂

∂t
t=0Φt(x) ⋅ νE = φ. Then the inequality follows from the minimality of E as

∂2

∂t2
t=0

Fh(Φt(E), F) ≥ 0

and following the standard calculation of the second variation (see, e.g., [1]). Finally, one obtains (2.5) for all
φ ∈ H1(∂∗E) by approximation argument and by the fact that the singular set has zero capacity.

3 Density estimates

This section is the theoretical core of the paper. The aim is to prove the following density estimate.

Proposition 3.1. Let F ⊂ ℝn+1 be an open and bounded set of finite perimeter, fix h ∈ (0, 1) and let E be aminimizer
of (2.2). Then there is a constant c > 0, which depends on the dimension n, |F| and on P(F) such that for all r ≤ √h
and all x ∈ ∂E it holds

min{|E ∩ Br(x)|, |Br(x) \ E|} ≥ crn+1
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and for all r ≤ C0√h, where C0 ≥ 1, it holds

crn ≤ P(E, Br(x)) ≤ C1rn ,

where C1 depends also on C0. Moreover, the following estimates hold

‖HE‖L∞(∂∗E) ≤
1

c√h
and ‖d̄F‖L∞(∂E) ≤ c−1√h.

It is interesting that in [19, Corollary 3.3] the authors obtain similar result for their scheme for a constant which
is independent of P(F).

I need several lemmas in order to prove Proposition 3.1 and therefore I postpone its proof to the end of the
section. Before proceeding to technical details, I state a useful consequence of Proposition 3.1.

Proposition 3.2. Let F, E ⊂ ℝn+1 be as in Proposition 3.1. Then there are constants C ≥ 1, c > 0 and h0 > 0,
depending on the dimension, |F| and P(F) such that E is the (Λ, r)-minimizer of the perimeter for Λ = C

√h
, r = c√h

and for h < h0. To be more precise, for sets G ⊂ ℝn+1 with E Δ G ⊂ Bc√h(x0) it holds

P(E) ≤ P(G) + C
√h
|E Δ G|.

Proof. The argument is standard but I recall it for the reader’s convenience. Let me first show that there is
x ∈ E and ̃c > 0 such that for ρ = ̃c√h it holds Bρ(x) ⊂ E. Fix ρ and apply the Besicovitch covering theorem to
find disjoint balls {Bρ(xi)}Ni=1 such that xi ∈ E and

N
∑
i=1
|Bρ(xi)| = N|B1|ρn+1 ≥ c|E|. (3.1)

I claim that for some i = 1, 2, . . . , N it holds B ρ
2
(xi) ⊂ E. Indeed, if this is not the case, then Proposition 3.1 implies

P(E, Bρ(xi)) ≥ cρn

for all i. Since the balls are disjoint, one has by the above and by (3.1) that

P(E) ≥
N
∑
i=1

P(E, Bρ(xi)) ≥ cN ρn ≥ c |E|
ρ
≥

c
√h

.

This is a contradiction when h is small enough.
Fix x0 and G as in the claim. Note that in general the set G does not have the same measure as E and one

needs to modify it to G̃ with |G̃| = |E|, e.g., by using the argument from [9] as follows. Assume that |G| < |E|
(the case |G| > |E| follows from similar argument). Since Bρ(x) ⊂ E, by decreasing ρ and r if needed, it holds
Bρ(x) ⊂ G. By continuity there is z ∈ ℝn+1 such that |z − x0| ≥ 2ρ and |G ∪ Bρ(z)| = |E|. Define G̃ = G ∪ Bρ(z).
Then by the minimality of E and Proposition 3.1 it holds

P(E) ≤ P(G̃) + C
√h
|G̃ Δ E|.

Arguing as in [9], one then deduces

P(G̃) − P(G) ≤ Hn(∂Bρ(z) \ G) −Hn(∂G ∩ Bρ(z))

≤
C
ρ
|Bρ(z) \ G| ≤

C
√h
|G̃ Δ E|

and the claim follows as |G̃ Δ E| ≤ 2|G Δ E| .

The first technical result which I need is the classical density estimate which can be found, e.g., in [20].

Lemma 3.3. Assume E ⊂ ℝn+1 is a set of finite perimeter with distributional mean curvature HE which satisfies
‖HE‖L∞(B2R(x0)) ≤ Λ. Then for all x ∈ BR(x0) which are on the boundary of E and r ≤ min{R, Λ−1} it holds

P(E, Br(x)) ≥ cnrn

for a dimensional constant cn > 0.
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For a minimizer of (2.2) it holds the inverse of the isoperimetric inequality.

Lemma 3.4. Let F ⊂ ℝn+1 be an open and bounded set of finite perimeter, fix h ∈ (0, 1) and let E be a minimizer
of (2.2). Then for all x ∈ ∂E and r ≤ C0√h it holds

P(E, Br(x)) ≤
C
r
min{|E ∩ B2r(x)|, |B2r(x) \ E|}

for a constant which depends on the dimension and on C0 > 0. In, particular it holds P(E, Br(x)) ≤ Crn .

Proof. Fix h ∈ (0, 1), x and r > 0 as in the claim and without loss of generality assume that x = 0. One may also
consider only the case |E ∩ B2r| ≤ |B2r \ E| as the other case is similar. In particular, it holds |E ∩ B2r| ≤ 1

2 |B2r|.
Since

2r

∫
0

Hn(∂Bρ ∩ E) = |E ∩ B2r|,

there is ρ ∈ (r, 2r) such that

Hn(∂Bρ ∩ E) ≤ Cn
|E ∩ B2r|

r
and |Bρ| ≥

2
3 |B2r|. (3.2)

Consider first the set E1 = E \ B̄ρ . In order to have a competing set with the volume of E, define ρ̃ ≤ ρ to be
a radius such that |Bρ̃| = |E ∩ Bρ| and define E2 = E1 ∪ Bρ̃ . Then it holds by construction that |E2| = |E|, ρ̃ < ρ
and

Hn(∂Bρ̃) = cn|Bρ̃|
n
n+1 = cn|E ∩ Bρ|

n
n+1 ≤ cn|E ∩ B2r|

n
n+1 ≤ Cn

|E ∩ B2r|
r

. (3.3)

By the minimality of E we have

P(E) + 1
h
∫
E

d̄F dx ≤ P(E2) +
1
h
∫
E2

d̄F dx.

Estimate the perimeter of E2 using (3.2) and (3.3) as

P(E2) ≤ P(E,ℝn+1 \ Bρ) +Hn(∂Bρ ∩ E) +Hn(∂Bρ̃)

≤ P(E,ℝn+1 \ Bρ) + Cn
|E ∩ B2r|

r
.

Use then E Δ E2 ⊂ B2r , |E| = |E2| and the fact that the signed distance function is 1-Lipschitz to estimate

∫
E

d̄F dx − ∫
E2

d̄F

≤ 4r|E ∩ Bρ| ≤ 4r|E ∩ B2r|.

Therefore one obtains by combining the three above inequalities and r ≤ C0√h

P(E, Br) ≤ P(E, Bρ) ≤ Cn
|E ∩ B2r|

r
+
4r
h
|E ∩ B2r| ≤ C

|E ∩ B2r|
r

.

By Lemma 3.3 and Lemma 3.4 it is clear that for Proposition 3.1 it is crucial to prove the curvature estimate
‖HE‖L∞ ≤ C

√h
. The next lemma is a step towards this.

Lemma 3.5. Let F, E and h be as in Proposition 3.1. Then it holds

‖HE‖L2(∂∗E) ≤
C1
√h

,

where the constant C1 depends on the dimension and on |F| and P(F).

Proof. The proof relies on the second variation inequality in Proposition 2.2. I would like to point out that in
the case of the mean curvature flow, when there is no volume constraint, the proof is considerable easier as
one could choose constant function in (2.5). In the volume preserving case I will choose a cut-off function for
a test function.
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To this end, use first [11, Proposition 2.3] (see also [17, Lemma 2.1]) to find a point x0 ∈ ℝn+1 and a radius
r ∈ (c, 1), where c = c(n, |F|, P(F)), such that

|E ∩ Br(x0)| =
1
2 |Br|.

Note that the minimality of E yields P(E) ≤ P(F) ≤ C. Moreover, by the isoperimetric inequality it holds
P(E) ≥ cn|E|

n
n+1 = cn|F|

n
n+1 ≥ c. These estimates are used repeatedly from now on without mentioning. Without

loss of generality assume that x0 = 0. Choose ρ < r such that |Br \ Bρ| = 1
4 |Br|. Note that then r − ρ ≥ cn > 0 and

3
4 |Bρ| ≥ |E ∩ Bρ| ≥

1
4 |Bρ|. (3.4)

Definefirst a cut-off function ζ ∈ C10(ℝn+1) such that 0 ≤ ζ ≤ 1, ζ = 1 in Bρ , ζ = 0 outside Br and |∇ζ| ≤ Cn . Choose
then φ = ζ − ̄ζ , where ̄ζ = −∫∂∗E ζ dHn , as a test function in (2.5), use |⟨∇d̄F , νE⟩| ≤ 1 and |φ| ≤ 1, and obtain

∫
∂∗E

|BE|2(ζ − ̄ζ )2 dHn ≤ ∫
∂∗E

|∇τζ|2 dHn +
P(E)
h

. (3.5)

Since HE = Trace(BE), it holds point-wise on ∂∗E

|BE|2 ≥
H2
E
n
. (3.6)

Recall that 0 ≤ ζ ≤ 1. Moreover, by the isoperimetric inequality and by (3.4) it holds P(E, Bρ) ≥ cn|E ∩ Bρ|
n
n+1 ≥ c.

Therefore ̄ζ ≥ c for c = c(n, |F|, P(F)). In particular, it holds |ζ(x) − ̄ζ | ≥ c for x ∈ ∂∗E \ Br . Hence, we have
by (3.5),

∫
∂∗E\Br

|HE|2 dHn ≤
C
h
P(F).

We repeat the same argument by defining a cut-off function ζ ∈ C1(ℝn+1) as ζ = 0 in Br , ζ = 1 outside BR
and |∇ζ| ≤ Cn , where R > r is such that |BR \ Br| = 1

4 |Br|. Using φ = ζ − ̄ζ in (2.5) and arguing as above yields

∫
∂∗E∩Br

|HE|2 dHn ≤
C
h
P(F)

and the claim follows.

The last lemma I need is a bound on the Lagrange multiplier in the Euler–Lagrange equation (2.4).

Lemma 3.6. Let F, E and h be as in Proposition 3.1. Then for the Lagrange multiplier in (2.4), i.e.,

d̄F
h
= −HE + λ on ∂∗E

it holds
|λ| ≤ C2
√h

,

where the constant C2 depends on the dimension, on |F| and on P(F).

Proof. Let Λ ≥ 0 be such that |λ| = Λ
√h
. Below all the constants depend on n, |F| and P(F). I only treat the case

when λ is positive as in the negative case the proof is similar. Define the set

Σ = {x ∈ ∂∗E : |HE(x)| <
Ĉ
√h
}.

I claim that we may choose Ĉ > 2 such that it depends on n, |F|, P(F) and on C1 from Lemma 3.5 and it holds

Hn(Σ) ≥ P(E)2 . (3.7)

Indeed, by Lemma 3.5 and by Ĉ > 2 it holds

Ĉ2

h
Hn(∂∗E \ Σ) ≤ ∫

∂∗E\Σ

H2
E dH

n ≤ ∫
∂∗E

H2
E dH

n ≤
C21
h
.

By choosing Ĉ large enough one then obtainsHn(∂∗E \ Σ) < P(E)
2 and (3.7) follows.
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By the Besicovitch covering theorem one finds disjoint balls of radius√h, denote them by {B√h(xi)}
N
i=1, with

xi ∈ Σ such that
N
∑
i=1

P(E, B√h(xi)) ≥ cnH
n(Σ) ≥ cP(E). (3.8)

By the Euler–Lagrange equation (2.4) and by the definition of the set Σ it holds for all x ∈ ∂∗E ∩ B√h(xi), with
xi ∈ Σ, that

|HE(x)| ≤

d̄F(x)
h
− λ

≤
|d̄F(x) − d̄F(xi)|

h
+

d̄F(xi)
h
− λ

≤

1
√h
+ |HE(xi)| ≤

2Ĉ
√h

. (3.9)

Therefore by Lemma 3.3 it holds

P(E, B √h
2
(xi)) ≥ P(E, B √h

2Ĉ
(xi)) ≥ ch

n
2 .

On the other hand, applying Lemma 3.4 first with r = √h2 yields

|E ∩ B√h(xi)| ≥ c√hP(E, B √h
2
(xi))

and then with r = √h yields h n
2 ≥ cP(E, B√h(xi)). In conclusion, it holds

|E ∩ B√h(xi)| ≥ c√hP(E, B√h(xi)) (3.10)

for all balls in the cover.
The minimality of E implies

1
h
∫
E\F

d̄F dx ≤ P(E) +
1
h
∫
EΔF

|d̄F | dx ≤ P(F). (3.11)

Note that by (3.9), by λ = Λ
√h

and by the Euler–Lagrange equation (2.4) we have for all x ∈ B√h(xi) that

d̄F(x) ≥ λh − |H(x)|h ≥ (Λ − 2Ĉ)√h.

Therefore either Λ ≤ 4Ĉ, in which case the claim follows trivially, or

d̄F(x) ≥
Λ
2
√h.

I assume the latter and show that also in this case Λ is bounded. Indeed, by the above discussion the balls B√h(xi)
are in the exterior of F. Therefore we estimate by (3.10) and by (3.8) that

1
h
∫
E\F

d̄F dx ≥
1
h

N
∑
i=1
∫

E∩B√h(xi)

d̄F dx

≥
1
h

N
∑
i=1
(
Λ
2
√h|E ∩ B√h(xi)|)

≥ cΛ
N
∑
i=1

P(E, B√h(xi))

≥ cΛHn(Σ) ≥ cΛP(E).

Since P(E) ≥ cn|E|
n
n+1 = cn|F|

n
n+1 , the above and (3.11) gives a bound for Λ and the claim follows.

Here is the proof of the density estimate.

Proof of Proposition 3.1. By Lemma 3.3, Lemma 3.4, Lemma 3.6 and by the Euler–Lagrange equation (2.4) it is
enough to prove

‖d̄F‖L∞(∂∗E) ≤ C√h. (3.12)

Argue by contradiction and assume that there is x0 ∈ ∂∗E such that

|d̄F(x0)| = Λ√h

for large Λ ≫ 1. Without loss of generality assume that x0 = 0 and consider only the case d̄F(x0) > 0 as the case
d̄F(x0) < 0 is similar.
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By the Euler–Lagrange equation (2.4), by Lemma 3.3 and Lemma 3.6 it holds for r0 = √h2Λ that

P(E, Br0 ) ≥ crn0 . (3.13)

Define radii rk = k√h + r0 for k = 0, 1, . . . , n + 1, where n + 1 is the dimension of the ambient space. For every
k = 0, 1, . . . , n + 1 choose a cut-off function ζk ∈ C10(ℝn+1) such that 0 ≤ ζ ≤ 1, ζk = 1 in Brk , ζk+1 = 0 inℝn+1 \ Brk+1
and |∇ζk| ≤ 2

√h
. Choose

φ = ζk − ̄ζk ,

where ̄ζk = −∫∂∗E ζk dHn , as a test function in the second variation condition (2.5), use |⟨∇d̄F , νE⟩| ≤ 1 and (3.6),
and obtain

1
n
∫
∂∗E

|HE|2(ζk − ̄ζk)2 dHn ≤
1
h
∫
∂∗E

(ζk − ̄ζk)2 dHn + ∫
∂∗E

|∇τζk|2 dHn . (3.14)

Since ζk = 0 outside Brk+1 , one may estimate

∫
∂∗E

|∇τζk|2 dHn ≤
4
h
P(E, Brk+1 ).

Moreover, since 0 ≤ ζk ≤ 1, it holds

∫
∂∗E

(ζk − ̄ζk)2 dHn = ∫
∂∗E

ζ2k − ̄ζ
2
k dH

n ≤ ∫
∂∗E

ζ2k dH
n ≤ P(E, Brk+1 ).

When Λ is large enough, for all x ∈ ∂∗E ∩ Brk+1 and all k ≤ n + 1 it holds d̄F(x) ≥ Λ
2√h. By the Euler–Lagrange

equation (2.4), by d̄F(x) ≥ Λ
2√h, and by Lemma 3.6 it holds

|HE| ≥
Λ

4√h
on ∂∗E ∩ Brk

when Λ is large. Therefore, by using the notation from Lemma 3.6, it holds

∂∗E ∩ Brk+1 ⊂ {x ∈ ∂∗E : |HE(x)| ≥
Ĉ
√h
} = ∂∗E \ Σ

when Λ is large. Then one may deduce from (3.7) that P(E, Brk+1 ) ≤ 1
2P(E). This yields

0 ≤ ̄ζk ≤
1
2 .

Therefore it holds
1
n
∫
∂∗E

|HE|2(ζk − ̄ζk)2 dHn ≥
1
n
∫

∂∗E∩Brk

|HE|2(1 − ̄ζk)2 dHn

≥ cn
Λ2
h
P(E, Brk ).

Combining the three above estimates with (3.14) yields

cn
Λ2
h
P(E, Brk ) ≤

5
h
P(E, Brk+1 ).

For Λ large enough this implies
ΛP(E, Brk ) ≤ P(E, Brk+1 ). (3.15)

Use (3.15) (n + 1)-times from k = 0 to k = n, use then (3.13) and recall that r0 = √h2Λ and obtain finally that

P(E, Brn+1 ) ≥ Λn+1P(E, Br0 ) ≥ cΛn+1rn0 = cΛ
n+1(
√h
2Λ )

n
= cΛh

n
2 . (3.16)

But now since rn+1 = (n + 1)√h + r0 ≤ 2(n + 1)√h, one obtains from Lemma 3.4 with r = 2(n + 1)√h that

P(E, Brn+1 ) ≤ P(E, Br) ≤ Ch
n
2 ,

which contradicts (3.16) when Λ is large.
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4 Existence of the flat flow

Now that the density estimates are proven, the proof of Theorem 1 follows from the arguments from [14, 19]
withoutmajor changes. In this section I consider the approximative flat flow (Eht )t≥0 and the associated sequence
(Ehk)k≥0 as in Definition 2.1, starting from an open and bounded set of finite perimeter E0. The proof for the
following “interpolation” result can be found in [14, Lemma 1.5].

Lemma 4.1. Let (Eht )t≥0 be an approximative flat flow starting from E0 and fix h ∈ (0, 1) and t > h. Then for all
l ≤ √h it holds

|Eht Δ Eht−h| ≤ C(lP(E
h
t−h) +

1
l
∫

Eht ΔEht−h

|d̄Eht−h | dx).

By the regularity result stated in Proposition 2.2, the Euler–Lagrange equation

d̄Eht−h
h
= −HEht + λt,h (4.1)

holds point-wise on ∂∗Eht and in a distributional sense on ∂Eht . Here λt,h is the Lagrange multiplier. Using the
minimality of Eht against the previous set Eht−h , one obtains the important inequality

P(Eht ) +
1
h
∫

Eht ΔEht−h

|d̄Eht−h | dx ≤ P(E
h
t−h). (4.2)

Using (4.2) and the argument [14, Lemma 2.1] or [19, Lemma 3.6], one obtains the following dissipation inequality.

Lemma 4.2. Let (Eht )t≥0 be an approximative flat flow starting from E0 and fix h ∈ (0, 1). Then for all T2 > T1 ≥ h
it holds

T2

∫
T1

‖HEht − λt,h‖
2
L2(∂∗Eht )

dt ≤ C(P(ET1−h) − P(ET2 )).

Moreover, it holds
T2

∫
T1

(‖HEht ‖
2
L2(∂∗Eht )
+ λ2t,h) dt ≤ C(1 + T2 − T1).

The constant depends on the dimension, |E0| and P(E0).

Proof. I will only sketch the proof. Let (Ehk) be the sequence of sets associated with (Eht )t≥0. For l ∈ ℤ with
2l ≤ 2Ch− 12 set

K(l) = {x ∈ ℝn+1 : 2lh < |d̄Eht−h (x)| ≤ 2
l+1h}.

Here C is such that |d̄Eht−h | ≤ C√h on ∂E
h
t . Proposition 3.1 yields that for every x ∈ ∂Eht ,

|Eht ∩ B2lh(x)| ≥ c(2lh)n+1 and Hn(∂Eht ∩ B2lh(x)) ≤ C(2lh)n .

Therefore for all x ∈ ∂Eht ∩ K(l) it holds

∫

B2l h(x)∩E
h
t ΔEht−h

|d̄Eht−h | dx ≥ c(2
lh)n+2 and ∫

B2l h(x)∩∂E
h
t

d̄2Eht−h
dHn ≤ C(2lh)n+2 .

Combining these two yields

∫

B2l h(x)∩∂E
h
t

d̄2Eht−h
dHn ≤ C ∫

B2l h(x)∩E
h
t ΔEht−h

|d̄Eht−h | dx.

By applying the Besicovitch covering theorem and summing over l ∈ ℤ (see [19, Lemma 3.6] for details) yields

∫

∂Eht

d̄2Eht−h
dHn ≤ ∫

Eht ΔEht−h

|d̄Eht−h | dx.
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This together with (4.1) and (4.2) implies

h ∫
∂Eht

(HEht − λt,h)
2 dHn ≤ C(P(Eht−h) − P(E

h
t )).

The first inequality then follows by iterating the above.
By [11, Lemma 2.4] it holds

|λt,h| ≤ C(1 + ‖HEht − λt,h‖L1(∂∗Eht ))

for a constant that depends on the dimension, on |E0| and P(E0). Note that then

‖HEht ‖
2
L2 + λ

2
t,h ≤ C(1 + ‖HEht − λt,h‖

2
L2 ).

Therefore by the first inequality one obtains
T2

∫
T1

(‖HEht ‖
2
L2 + λ

2
t,h) dt ≤ C

T2

∫
T1

(1 + ‖HEht − λt,h‖
2
L2 ) dt ≤ C(1 + T2 − T1).

The third lemmawe need is a quantitative bound on the diameter of the sets (Eht ), which is essentially the same
as [19, Lemma 3.8].

Lemma 4.3. Let (Eht )t≥0 be an approximative flat flow starting from E0 for h ∈ (0, 1). Then for all T > 0 there is RT ,
which depends on T , on the dimension and on the diameter of the initial set E0, such that Eht ⊂ BRT for all t ≤ T .

Proof. As in [19, Lemma 3.8] define rt for all t ≤ T as

rt := inf{r > 0 : Eht ⊂ Br}.

Arguing as in [19, Lemma 3.8], one deduces that at the point y ∈ ∂Brt ∩ ∂Eht it holds HEht (y) ≥ 0 and therefore
by (4.1)

rt ≤ rt−h + h|λt,h|.

Iterating this and using Lemma 4.2 yields

RT − R0 ≤
T

∫
0

|λt,h| dt ≤
T

∫
0

(1 + λ2t,h) dt ≤ C(1 + T).

Proof of Theorem 1. Let (Eht )t≥0 be an approximative flat flow starting from E0 for h ∈ (0, 1) and fix T ≥ 1. Then
by (4.2) it holds P(Eht ) ≤ P(E0) and by Lemma 4.3 it holds Eht ⊂ BRT for all t ≤ T . I claim that for 0 < t < s with
s − t ≥ h it holds

|Eht Δ Ehs | ≤ C√t − s. (4.3)

Once (4.3) is obtained, then the convergence of a subsequence Ehkt → Et in measure follows as in [14, 19].
Let j, k be such that s ∈ [jh, (j + 1)h) and t ∈ [(j + k)h, (j + k + 1)h). Then by applying Lemma 4.1 for l = h

√s−t
and by (4.2) one obtains

|Eht Δ Ehs | ≤
j+k
∑
m=j
|Ehmh Δ E

h
(m+1)h|

≤ C
j+k
∑
m=j
(

h
√s − t

P(Ehmh) +
√s − t
h

∫

Eh(m+1)hΔE
h
mh

|d̄Ehmh | dx)

≤ C
j+k
∑
m=j

h
√s − t

P(E0) + C√s − t
j+k
∑
m=j
(P(Ehmh) − P(E

h
(m+1)h))

≤ C kh
√s − t

P(E0) + C√s − tP(E0).

Since kh ≤ 2(s − t), one obtains (4.3).
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The proof of the consistency principle for C1,1-regular initial sets follows by using the arguments in [12]. The
volume penalization is used only in [12, Lemma 3.2], but one may overcome this by using the lemma below.

Lemma 4.4. Let F ⊂ ℝn+1 be an open and bounded set which satisfies interior and exterior ball condition with
radius r0 > 0 and let E be a minimizer of (2.2). There are ρ0 and h0 with the property that if G is a set of finite
perimeter such that

G Δ E ⊂ Bρ(x) ∩NC0h(∂F)

for ρ ≤ ρ0 and h ≤ h0, whereNC0h(∂F) = {x : dist(x, ∂F) < C0h}, then it holds

P(E) ≤ P(G) + Cρn+1 .

Above the constant depends on the dimension, on r0 , C0 , |F| and P(F).

Proof. By approximation one may assume G to be smooth. Since F satisfies interior and exterior ball condition,
by [12, Lemma 3.1] it holds

max
x∈EΔF

dist(x, ∂F) ≤ Ch (4.4)

when h ≤ h0. As in the proof of Proposition 3.2 the set G may not have the same measure as E and one has to
modify it to G̃with |G̃| = |E|. Assume that |G| < |E|. Since F satisfies interior ball conditionwith radius r0, there is
y ∈ G such that B r0

2
(y) ⊂ G. By continuity there is z ∈ ℝn+1 such that |z − x| ≥ 2ρ0 and |G ∪ B r0

2
(z)| = |E|when ρ0

is small. Define G̃ = G ∪ B r0
2
(z). By theminimality of E, by (4.4) and by the assumption G Δ E ⊂ Bρ(x) ∩NC0h(∂F)

it holds
P(E) ≤ P(G̃) + C|G̃ Δ E| ≤ P(G̃) + Cρn+1 .

Arguing as in [9], one then deduces

P(G̃) − P(G) ≤ Hn(∂B r0
2
(z) \ G) −Hn(∂G ∩ B r0

2
(z))

≤
2(n + 1)|B1|

r0
|B r0

2
(z) \ G|

≤ C|G̃ Δ E| ≤ Cρn+1

and the claim follows.

The paper concludes with Theorem 2. To this end, I recall the definition of a distributional solution of (1.1)
from [14].

Definition 4.5. A family of sets of finite perimeter (Et)t≥0 is a distributional solution to (1.1) starting from
E0 ⊂ ℝn+1 if the following holds:
(1) For almost every t > 0 the set Et has mean curvature HEt ∈ L2(∂∗Et) in a distributional sense and for every

T > 0,
T

∫
0

‖HEt‖
2
L2(∂∗Et) dt <∞.

(2) There exists v : ℝn+1 × (0,∞)→ ℝwith v ∈ L2(0, T; L2(∂∗Et)) such that for every ϕ ∈ C10(ℝn+1 × [0,∞)) it
holds

−
T

∫
0

∫
∂∗Et

vϕ dHn dt =
T

∫
0

∫
∂∗Et

(HEt − H̄Et )ϕ dHn dt,

T

∫
0

∫
Et

∂tϕ dxdt + ∫
E0

ϕ( ⋅ , 0) dx = −
T

∫
0

∫
∂∗Et

vϕ dHn dt.

Proof of Theorem 2. The proof is exactly the same as [19, Theorem 2.3]. Note that Proposition 3.2 implies that the
sets Eht are (Ch−

1
2 , c√h)-minimizers of the perimeter, i.e., for every F with F Δ Eht ⊂ Bc√h(x0) it holds

P(Eht ) ≤ P(F) +
C
√h
|Eht Δ F|.
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