Näytä suppeat kuvailutiedot

dc.contributor.authorHalonen, Vilho
dc.contributor.authorPölönen, Ilkka
dc.date.accessioned2024-02-28T10:32:31Z
dc.date.available2024-02-28T10:32:31Z
dc.date.issued2023
dc.identifier.citationHalonen, V., & Pölönen, I. (2023). Quantification of Errors Generated by Uncertain Data in a Linear Boundary Value Problem Using Neural Networks. <i>SIAM/ASA Journal on Uncertainty Quantification</i>, <i>11</i>(4), 1258-1277. <a href="https://doi.org/10.1137/22M1538855" target="_blank">https://doi.org/10.1137/22M1538855</a>
dc.identifier.otherCONVID_194836033
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93723
dc.description.abstractQuantifying errors caused by indeterminacy in data is currently computationally expensive even in relatively simple PDE problems. Efficient methods could prove very useful in, for example, scientific experiments done with simulations. In this paper, we create and test neural networks which quantify uncertainty errors in the case of a linear one-dimensional boundary value problem. Training and testing data is generated numerically. We created three training datasets and three testing datasets and trained four neural networks with differing architectures. The performance of the neural networks is compared to known analytical bounds of errors caused by uncertain data. We find that the trained neural networks accurately approximate the exact error quantity in almost all cases and the neural network outputs are always between the analytical upper and lower bounds. The results of this paper show that after a suitable dataset is used for training even a relatively compact neural network can successfully predict quantitative effects generated by uncertain data. If these methods can be extended to more difficult PDE problems they could potentially have a multitude of real-world applications.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSociety for Industrial & Applied Mathematics (SIAM)
dc.relation.ispartofseriesSIAM/ASA Journal on Uncertainty Quantification
dc.rightsCC BY 4.0
dc.subject.otherPDE
dc.subject.otheruncertainty quantification
dc.subject.othermachine learning
dc.subject.otherneural network
dc.titleQuantification of Errors Generated by Uncertain Data in a Linear Boundary Value Problem Using Neural Networks
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202402282195
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineComputational Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1258-1277
dc.relation.issn2166-2525
dc.relation.numberinseries4
dc.relation.volume11
dc.type.versionacceptedVersion
dc.rights.copyright© 2023 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysokoneoppiminen
dc.subject.ysoneuroverkot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1137/22M1538855
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0